Определение: Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а все ребра вне этих граней параллельны между собой.
Прямой призмой называется призма, у которой боковое ребро перпендикулярно плоскости основания.
Пусть данная призма АВСDA₁B₁C₁D₁ Грани АВСD и A₁B₁C₁D₁ - трапеции, остальные грани призмы - перпендикулярные к плоскости оснований прямоугольники. Объем призмы равен произведению площади основания призмы на её высоту. По условию S (АА₁D₁D)=12 см² и S (BB₁C₁C)=8 см² Расстояние между параллельными боковыми гранями дано СН=5 м. Думаю, это ошибка. Решение дается для СН = 5 см Площадь трапеции, основания призмы, и длина бокового ребра , т.е. высоты призмы -неизвестны. Для решения задачи применим дополнительное построение. Достроим призму до параллелепипеда АКМDD₁А₁К₁М₁ Из В, С, В₁ и С₁ проведем перпендикуляры к большей боковой грани. Получился прямоугольный параллелепипед с площадью грани В1С1СВ = 8 см² и высотой к ней СТ=5 см Его объем 8*5=40 см³ Объем параллелепипеда АКМDD₁А₁К₁М₁ равен площади большей грани на СТ=12*5=60 см³ Диагональные сечения "пристроенных" сбоку от меньшего параллелепипеда призм делят их пополам. Половина разности объемов этих призм является лишней, (см. рисунок). Пусть объем большего параллелепипеда равен V₁, объём меньшего V₂ , объем данной по условию призмы -V. Тогда V= V₂+(V₁ -V₂):2 V (ACDD₁ A₁ B₁ C₁ )=40+(60-40):2=50 см³ ----- Для расстояния между параллельными боковыми гранями равном 5 м=500 см объём будет в 100 раз больше и будет равен V=5000 см³ или 0,005 м³----- Для расстояния 5 м=500 см объём будет в 100 раз больше и будет равен 5000 см³ или 0,005 м³
15 м
Пошаговое объяснение:
.
Составим систему уравнений.
P ΔLBN = LB + BN + LN
LB = BN, по свойству равнобедренного треугольника.
Пусть x м - LB и BN, тогда y м - LN
x + x + y = 50 - 1 уравнение
Составляем 2 уравнение:
P ΔLBT = LB + BT + LT
x м - LB
BT - высота, медиана, биссектриса (по свойству равнобедренного треугольника), значит LT = TN = 1/2LN
Тогда 1/2y м - LT
ΔLBT - прямоугольный, так как BT - высота
⇒ по теореме Пифагора:
м - BT
- 2 уравнение
Решим получившуюся систему уравнений:
В числителе 2 дроби видим формулу сокращённого умножения - квадрат разности. Раскладываем по формуле: (a - b)² = a² - 2ab + b²
17 м - LB
17 + 17 + y = 50
y = 50 - 17 - 17
y = 50 - 34
y = 16
16 м - LN
LT = 1/2LN = 16/2 = 8 м
м
.
P ΔLBN = LB + LN + BN
Так как ΔLBN - равнобедренный ⇒ LB = BN (по свойству равнобедренного треугольника)
⇒ P ΔLBN = 2LB + LN
2LB + LN = 50 м
P ΔLBT = LB + BT + LT
Так как BT - медиана, по условию ⇒ LT = 1/2LN
⇒ P ΔLBT = LB + BT + 1/2LN
LB + BT + 1/2LN = 40 м | · 2
2LB + 2BT + LN = 80 м
Так как 2LB + LN = 50 м ⇒ 2BT = 80 - 50 = 30 м
⇒ BT = 30 : 2 = 15 м
Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а все ребра вне этих граней параллельны между собой.
Прямой призмой называется призма, у которой боковое ребро перпендикулярно плоскости основания.
Пусть данная призма АВСDA₁B₁C₁D₁
Грани АВСD и A₁B₁C₁D₁ - трапеции, остальные грани призмы - перпендикулярные к плоскости оснований прямоугольники.
Объем призмы равен произведению площади основания призмы на её высоту. По условию S (АА₁D₁D)=12 см² и S (BB₁C₁C)=8 см²
Расстояние между параллельными боковыми гранями дано СН=5 м. Думаю, это ошибка.
Решение дается для СН = 5 см Площадь трапеции, основания призмы, и длина бокового ребра , т.е. высоты призмы -неизвестны. Для решения задачи применим дополнительное построение. Достроим призму до параллелепипеда АКМDD₁А₁К₁М₁
Из В, С, В₁ и С₁ проведем перпендикуляры к большей боковой грани. Получился прямоугольный параллелепипед с площадью грани В1С1СВ = 8 см² и высотой к ней СТ=5 см Его объем 8*5=40 см³ Объем параллелепипеда АКМDD₁А₁К₁М₁ равен площади большей грани на СТ=12*5=60 см³
Диагональные сечения "пристроенных" сбоку от меньшего параллелепипеда призм делят их пополам. Половина разности объемов этих призм является лишней, (см. рисунок). Пусть объем большего параллелепипеда равен V₁, объём меньшего V₂ , объем данной по условию призмы -V. Тогда V= V₂+(V₁ -V₂):2 V (ACDD₁ A₁ B₁ C₁ )=40+(60-40):2=50 см³
-----
Для расстояния между параллельными боковыми гранями равном 5 м=500 см объём будет в 100 раз больше и будет равен
V=5000 см³ или 0,005 м³-----
Для расстояния 5 м=500 см объём будет в 100 раз больше и будет равен
5000 см³ или 0,005 м³