Какого растояния двух сел лыжник и пешеход вышли из двух сел одновременно на встречу друг другу встретились через 3 часа пешеход проходил в 4 часа а лыжник на 11 км больше какого растояния двурх сел
Для того, чтобы было 6 нулей в 3-х числах должно быть не менее 6 множителей 2 и не менее 6 множителей 5. При чем, так как сумма не кратна 10, в одном числе должны быть 2 без 5, а в другом наоборот. Числа не могут иметь множителей 5 больше 3.Таким образом первое число 5*5*5=125. Чтобы сумма оканчивалась на 7, второе число должно заканчиваться на 2-это 2 или 32, но, если 2, то третье число будет больше суммы, а этого не может быть, так как все числа положительные. Значит второе число-32. Третье число составляем из оставшихся множителей: 2*5*5*5=250. Проверяем сумму: 250+126+32=407. ответ: 250;125;32
При чем, так как сумма не кратна 10, в одном числе должны быть 2 без 5, а в другом наоборот. Числа не могут иметь множителей 5 больше 3.Таким образом первое число 5*5*5=125. Чтобы сумма оканчивалась на 7, второе число должно заканчиваться на 2-это 2 или 32, но, если 2, то третье число будет больше суммы, а этого не может быть, так как все числа положительные. Значит второе число-32. Третье число составляем из оставшихся множителей: 2*5*5*5=250. Проверяем сумму: 250+126+32=407.
ответ: 250;125;32
Відповідь:
13 сентября Юра дорешает все задачи в учебнике.
Покрокове пояснення:
7 сентября Юра решил Х задач, 8 сентября - ( Х - 1 ), 9 сентября - ( Х - 2 ).
За три дня Юра решил Х + ( Х - 1 ) + ( Х - 2 ) = 3Х - 3 = 91 - 46 = 45 задач.
Х = 16 задач - Юра решил 7 сентября, ( Х - 1 ) = 15 задач - Юра решил 8 сентября, ( Х - 2 ) = 14 задач - Юра решил 9 сентября.
10 сентября Юра решит 14 - 1 = 13 задач и останется решить 46 - 13 = 33 задачи.
11 сентября Юра решит 13 - 1 = 12 задач и останется решить 33 - 12 = 21 задачу.
12 сентября Юра решит 12 - 1 = 11 задач и останется решить 21 - 11 = 10 задач.
13 сентября Юра решит 11 - 1 = 10 задач и останется решить 10 - 11 = 0 задач - все задачи решены.