В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Uchenick2002goda
Uchenick2002goda
31.05.2022 04:49 •  Математика

Каждую грань правильной пирамиды SA1A2...A6 с основанием A1A2...A6 разрешается раскрасить в один из 11 цветов. Сколькими можно раскрасить пирамиду при условии, что все грани будут разного цвета? Раскраски считаются различными, если не получаются друг из друга вращением пирамиды.

Показать ответ
Ответ:
kirstav64
kirstav64
11.12.2020 08:05

ответ:13860

Пошаговое объяснение:1. Раскрасим основание A1A2...A4 в один из 11 цветов. Такую раскраску можно осуществить

2. Раскрасим теперь по очереди боковые грани пирамиды. Для первой грани SA1A2 имеется 11−1=10 вариантов раскраски, для второй грани SA2A3 имеется  11−2=9 вариантов раскраски, и так далее, для 4-й по порядку грани  имеется 11−4=7 вариант(-ов, -a) раскраски. Таким образом, всего получаем  

 M=11(11−1)(11−2)...(11−4)

 вариантов раскраски пирамиды.

 3. По условию задачи две раскраски считаются одинаковыми, если получаются друг из друга движением. В нашем случае, у пирамиды существует ровно 4 движений (4 поворотов). Потому искомое число раскрасок будет в 4 раз меньше величины M.

 Получаем ответ:

 11(11−1)(11−2)...(11−4)4=13860.

 

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота