Кочевые племена гуннов объединил шаньюй Модэ в
А) III в. до н. э. Б) VI в. до н. э. В) II в. до н. э. Г) I в. н. э.
2.По мнению ученого-востоковеда Л.Н. Гумилева, в 209 г. до н. э во главе с Модэ
А) хунны завоевали «государство уйсун». Б) возникло «государство уйсун». В) хунны двинулись на запад. Г) возникла «держава хунну».
3.По китайским источникам правитель гуннских племен носил титул
А) Шаньюй. Б) Гуньмо. В) Каган. Г) Царь.
4. Вторыми лицами в государстве гуннов после шаньюя, являлись - темники, которые были из числа
А) Жрецов Б) Военной знати В) Близких родственников Г) Визирей
5. На 300 лет растянулась война гуннов с
А) Китаем. Б) Уйсунами. В) Кангюями Г) Тюрками.
6.В III в. до н. э. Китайское государство начало строить Великую китайскую стену для защиты от
А) аваров. Б) тюрков. В) гуннов. Г) кангюев.
7. Разделение гуннского государства на южную и северную произошло в
А) 55 году до н.э. Б) 35 году до н. э В) 45 году до н. э Г) 30 году до н. э
8. В I в. до н. э. во главе с шаньюем Чжи-Чжи двинулись на запад
А) кангюи. Б) южные гунны. В) тюрки. Г) северные гунны.
9. В 445 г. в Европе во главе государства гуннов встал
А) Бумын. Б) Модэ. В) Аттила. Г) Истеми.
10. Основной вид хозяйственной деятельности гуннов
А) кочевое скотоводство. Б) полукочевое скотоводство. В) оседлое скотоводство. Г) земледелие.
11. Походы гуннов во главе с Аттила освобождению Европы от
А) Тюркского каганата. Б) Византийской империи. В) монгольского владычества. Г) Римской империи надо
лист загнули справа
@
Разметим весь лист параллельными линиями с шагом 1 см в одном и другом перпендикулярных направлениях, начиная от края, так чтобы образовалось ровно 100 одинаковых квадратиков, каждый площадью в один квадратный сантиметр. Назовём их для удобства дальнейших рассуждений – «ячейками».
Тогда все складки, всех описываемых в условии загибаний, будут совпадать с этими линиями (толщину бумаги мы не учитываем, считая её, как бы, бесконечно тонкой).
Заметим, при этом, что при любом (!) загибании, та ячейка, которая находится в угловом квадратике (верхнем правом) – непременно снова перейдёт в новый угловой многослойный квадратик (верхний правый).
Будем согнутый лист на любой стадии называть «фигурой».
Выделим у этой «фигуры» некоторые особые зоны (всего 4 зоны):
1) [один] «угловой квадратик» (о нём мы уже упоминали, верхний правый);
2) [2 штуки] «краевые полосы» – многослойные полосы, шириной в 1 см, образующиеся сверху и справа после нескольких загибании краёв фигуры («угловой квадратик» мы рассматриваем отдельно, а поэтому мы его НЕ включаем в «краевые полосы»)
3) [один] «однослойный остаток».
При каждом загибании фигуры, край, который заворачивают внутрь, прикладывается к листу, и толщина «краевой полосы» увеличивается на один слой листа, а так же заметно увеличивается толщина «углового квадратика». При этом важно понимать, что толщина другой «краевой полосы» не увеличивается.
Когда после всех загибаний получилась «фигура» в виде конечного квадрата 4 на 4 см, часть тонкого однослойного листа, т.е. «однослойный остаток», осталась только в пределах квадрата 3 на 3 см, «огороженного» сверху и справа сантиметровой шириной «краевых полос» и «углового квадратика».
Ширина «краевых полос» всегда равна 1 сантиметру, а их длина в конечном положении будет равна 3 (трём) сантиметрам.
Поскольку 10-сантиметровая сторона исходного листа «ужалась» до стороны фигуры, размером в 4 см, то значит, в совокупности, с каждой стороны было загнуто по 6 сантиметра листа. А именно: 6 сантиметров справа и 6 сантиметров сверху. Значит в «краевых полосах» сосредоточено 6 дополнительных (!) слоя листа, а значит, всего в «краевых полосах» сосредоточено 7 слоёв листа.
Площадь «краевой полосы» равна трём квадратным сантиметрам, и при этом их 2 штуки, и в каждой по 7 слоёв исходного листа, значит всего во всех краевых полосах сосредоточено 3*7*2 = 42 «ячейки».
Площадь «однослойного остатка», размером 3x3 см – равна 9 квадратным сантиметрам и содержит в себе 9 «ячеек».
Всего было 100 «ячеек». Из них 42 + 9 = 51 «ячейку» мы уже нашли. Остальные 49 «ячеек» сосредоточены в «угловом квадратике». А значит в «угловом квадратике» будет сосредоточено 49 слоёв исходного листа.
Если проткнуть шилом такой «угловой квадратик», а потом распаковать «фигуру» обратно в исходное состояние, то мы обнаружим на развёрнутом листе 49 дырок.
Для того чтобы снять все сомнения, просто проведём чистый, "незамутнённый логикой" эксперимент и убедимся в правильности приведённых рассуждений. Результаты эксперимента представлены на фотографии с 49-тью дырками.
О т в е т : 49 дырок.
А) 34
Б) 53
В) 76
Г) 88
Д) 92
Пусть х – возраст Джима, Джона и Джека.Тогда сумма их возрастов будет равна: х+х+х=3*х лет. Их младший брат Джордж ровно на 3 года их младше, значит ему исполнилось: х-3 лет.
Сумма возрастов всех братьев равна: 3х+(х-3)=3х+х-3=4х-3 лет.
Число свечек на торте, который приготовила им мама равно сумме возрастов всех пяти братьев:
Число свечек=4х-3
Тогда возраст одного из братьев тройняшек (х лет) равен:
4х-3=число свечек
4х=число свечек+3
х=(число свечек+3)/4
Значит, х –число кратное 4.
Рассмотрим предлагаемые варианты ответов:
а) 34: 34+3=37 (не кратно 4, т.е. делится с остатком: 40:4=9,25)
б) 53: 53+3=56 (кратно 4, т.е. 56:4=14)
в) 76: 76+3=79 (не кратно 4, т.е. делится с остатком: 19,75)
г) 88: 88+3=91 (не кратно 4, т.е. делится с остатком: 22,75)
д) 92: 92+3=95 (не кратно 4, т.е. делится с остатком: 23,75)
Значит, из всех предложенных вариантов подходит только число 53.
ОТВЕТ: б) 53
Проверим: х=(53+3)/4=56/4=14 (лет) – Джиму, Джону и Джеку. А их младшему брату х-3=14-3=11 лет. Сумма возрастов четырех братьев=количество свечей=14*3+11*1=42+11=53