Когда мистер и миссис смит садились в самолёт,у них было вместе 94кг багажа.за излишек веса мистер смит уплатил 1 доллар и 50 центов,а миссис смит —2 доллара.если бы мистер смит путешествовал в одиночку со всем багажом,ему пришлось бы уплатить 13 долларов и 50 центов.сколько килограммов груза может перевезти каждый пассажир бесплатно?
ответ: 6√3 см
Пошаговое объяснение:
1. Из треугольника АСД (С=90) АС =√400 - 256 =- 12 ;
Из треугольника АВС (с=90) АВ =АС:cos30 =12 ^ √3/2 =6√3 (cм)
2. Плоскости в пространстве либо пересекаются либо - не пересекаются (параллельны) . Допустим , что заданные плоскости пересекаются по некоторой прямой а , содержащей все общие точки этих плоскостей. По условию первая диагональ параллельна плоскости α , значит с прямой а она не имеет общих точек т.е. она параллельна прямой а. Но вторая диагональ согласно условию тоже не имеет общих точек с прямой а значит тоже параллельна прямой а. Пусть диагонали параллелограмма пересекаются в точке О. Тогда получается что в плоскости параллелограмма через точку О провели две различные прямые каждая из которых параллельна прямой а , что противоречит теореме о том , что через точку не лежащую на прямой можно провести прямую, параллельную данной и только одну. Значит предположение о том,, что прямые пересекаются не верно. Остаётся принять условие - плоскости параллельны
Сначала мы пишем характеристическое уравнение y`-4y`+4y=0, и здесь мы делаем замену y=e^(kx), и после вывода мы получаем уравнение: k^2-4k+4=0, (k-2)^2=0, k1=k2=2, и поэтому частные решения y1= e^(2x) и y2=x*e^(2x), а общее решение соответствующего однородного уравнения-y(p)=C1*e^(2x)+C2*x*e^(2x).). Теперь мы решаем систему для определения C1 и C2:
{{C1`*y1+C2`*y2=0 , {e^(2x)*C1`+x*e^(2x)*C2`=0 , {C2`=-sin(4 x) , {C2=(cos(4 x))/4 + D2
{{C1`*y1`+C2`*y2`=-e^(2x)*sin(4x) {2 e^(2 x)*C1+2x*e^(2x)*C2+e^(2x)*C2=-e^(2x)*sin(4x) {C1`=-x*C2` {C1`=-x*sin(4x)
{C2=(cos(4x))/4+D2
{{C1=-(x*cos(4 x))/4 + (sin(4 x))/16 + D1, где D1 и D2-константы.
Таким образом, общее решение нашего дифференциального уравнения y=(-(x*cos(4x))/4 + (sin(4 x))/16 + D1 )*e^*(2x) + ((cos(4x))/4+D2)*x*e^(2x)