Сдвинем интервал на две единицы вправо, тогда имеем интервал:
[52; 152], тогда количество чисел кратных одновременно на 3,4,5,6 с данного интервала равно числу чисел дающих при делении на 3 - остаток 1, при делении на 4 - остаток 2, при делении на 5 - остаток 3 и при делении на 6 - остаток 4.
Число чисел кратных: 3;4;5;6; эквивалентно числу чисел кратных: 3*2^2*5 = 60
Cреди чисел [52; 152] есть всего два таких числа:
60 и 120, а значит нужные нам числа с промежутка [50;150] равны:
Пусть т. O - центр пересечения диагоналей прямоугольника ABCD.
Тогда углы AOB и DOB - равны, как вертикальные.
Рассмотрим треугольник AOB:
Со свойства прямоугольника - диагонали равны и точкой пересечения делятся пополам, то есть BO = AO. С определения треугольник AOB - равнобедренный.
С теоремы о сумме углов треугольника:
180° = ∠OAB + ∠ABO + ∠AOB
Со свойства равнобедренного треугольника:
∠OAB = ∠ABO, тогда:
180° = ∠ABO + ∠ABO + 58°
2 · ∠ABO = 180° - 58°
2 · ∠ABO = 122°
∠ABO = 61° = ∠OAB
Рассмотрим треугольник ABH (Прямая BH, перпендикулярна AC)
Со свойства о сумме углов треугольника:
∠HAB + ∠x + ∠BHA = 180°
∠HAB = ∠OAB, тогда:
61° + ∠x + 90° = 180°
∠x = 29°
ответ: 29 градусов.
ответ: 2 числа.
Пошаговое объяснение:
Сдвинем интервал на две единицы вправо, тогда имеем интервал:
[52; 152], тогда количество чисел кратных одновременно на 3,4,5,6 с данного интервала равно числу чисел дающих при делении на 3 - остаток 1, при делении на 4 - остаток 2, при делении на 5 - остаток 3 и при делении на 6 - остаток 4.
Число чисел кратных: 3;4;5;6; эквивалентно числу чисел кратных: 3*2^2*5 = 60
Cреди чисел [52; 152] есть всего два таких числа:
60 и 120, а значит нужные нам числа с промежутка [50;150] равны:
58 и 118