Коробка имеет форму прямоугольного параллелепипеда. Высота коробки 3см, а её дно имеет форму квадрата, сторона которого 4см. Саша заполнил всю коробку одинаковыми кубиками. Сколько таких кубиков потребовалось, если длина ребра кубика 1см?
Пошаговое объяснение: пронумеруем школьников. 1- самый низкий 6- самый высокий.
Заметим, что во втором ряду обязательно стоит 6 школьник и обязательно не стоит первый школьник (иначе возникнет противоречие, так как нет школьника выше шестого и нет школьника ниже первого)
Рассмотрим варианты, кто может стоять во втором ряду
654, 653, 652, 643, 642.
если во втором ряду стоят 6, 5 и 4, то всего расставить школьников 3!•3=18
если во втором ряду стоят 6,5,3 то кол-во сп-ов = 2•2•1•3= 12
если во втором ряду 6,5,2 то кол-во сп-ов= 1•2•1•3=6
если 6,4,3 то = 2•1•1•3=6
если 6,4,2 то = 1•1•3=3
в итоге так как нам нужно выбрать разные варианты расстановки учеников то есть или одно или другое, то применяем правило сложения.
Кол-во Кол-во фонариков Общее кол-во
гирлянд в 1-й гирлянде фонариков
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Красные одинаковое 9 шт. 72 шт.
Зелёные одинаковое 7 шт. ?
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1) 72 : 9 = 8 (шт.) - количество гирлянд;
2) 8 · 7 = 56 (шт.) - количество зелёных фонариков.
ответ: 56 зелёных фонариков.
ответ: 45 (лично мое решение, которое я писала)
Пошаговое объяснение: пронумеруем школьников. 1- самый низкий 6- самый высокий.
Заметим, что во втором ряду обязательно стоит 6 школьник и обязательно не стоит первый школьник (иначе возникнет противоречие, так как нет школьника выше шестого и нет школьника ниже первого)
Рассмотрим варианты, кто может стоять во втором ряду
654, 653, 652, 643, 642.
если во втором ряду стоят 6, 5 и 4, то всего расставить школьников 3!•3=18
если во втором ряду стоят 6,5,3 то кол-во сп-ов = 2•2•1•3= 12
если во втором ряду 6,5,2 то кол-во сп-ов= 1•2•1•3=6
если 6,4,3 то = 2•1•1•3=6
если 6,4,2 то = 1•1•3=3
в итоге так как нам нужно выбрать разные варианты расстановки учеников то есть или одно или другое, то применяем правило сложения.
18+12+6+6+3=45