пусть о - центр вписанной окружности, n - точка касания окр со стороной ac, k - точка касания окр со стороной bc, m - точка касания окружности со стороной ab, тогда mb = x, am =2x (2/1 от a), значит ab =3x. по утверждению со стр.167 учебника - отрезки касательных к окружности , проведенные из одной точки равны и составляют ровные углы с прямой проходящей через эту точку и центр окружности - am =an, an =2x и bk =x. аналог. ck =cn =15-2x.(т.к. ac=15, a an =2x).периметр будет ab+bc+ac=3x+(x+15-2x)+(2x+15-2x)=42.решив уравнение имеем x=6. 3н. ab=18 см,ac=15 см, bc=9см
Как говорится "нетрудно показать, что" при этом условии в основание пирамиды (трапецию) можно вписать окружность и следовательно можно найти длины боковых сторон трапеции: (4+16)/2 = 10 см
Диаметр вписанной окружности можно найти как катет прямоугольного треугольника с гипотенузой 10 (боковая сторона трапеции) и катетом равным половине разности оснований: (16-4)/2 = 6 см
D = корень(10*10-6*6) = 8 см
То есть высоты боковых граней будут равны (D/2)/sin(30) = (8/2)/0.5 = 8 см
Теперь дело за площадью которая равна половине произведения найденной высоты (она одинакова у всех четырех боковых граней) на сумму сторон основания Sб = 0.5*8*(4+16+10+10) = 60 см2
ответ:
пусть о - центр вписанной окружности, n - точка касания окр со стороной ac, k - точка касания окр со стороной bc, m - точка касания окружности со стороной ab, тогда mb = x, am =2x (2/1 от a), значит ab =3x. по утверждению со стр.167 учебника - отрезки касательных к окружности , проведенные из одной точки равны и составляют ровные углы с прямой проходящей через эту точку и центр окружности - am =an, an =2x и bk =x. аналог. ck =cn =15-2x.(т.к. ac=15, a an =2x).периметр будет ab+bc+ac=3x+(x+15-2x)+(2x+15-2x)=42.решив уравнение имеем x=6. 3н. ab=18 см,ac=15 см, bc=9см
пошаговое объяснение:
Как говорится "нетрудно показать, что" при этом условии в основание пирамиды (трапецию) можно вписать окружность и следовательно можно найти длины боковых сторон трапеции: (4+16)/2 = 10 см
Диаметр вписанной окружности можно найти как катет прямоугольного треугольника с гипотенузой 10 (боковая сторона трапеции) и катетом равным половине разности оснований: (16-4)/2 = 6 см
D = корень(10*10-6*6) = 8 см
То есть высоты боковых граней будут равны (D/2)/sin(30) = (8/2)/0.5 = 8 см
Теперь дело за площадью которая равна половине произведения найденной высоты (она одинакова у всех четырех боковых граней) на сумму сторон основания Sб = 0.5*8*(4+16+10+10) = 60 см2