Поскольку пирамида может иметь в основании и треугольник, и квадрат, и пятиугольник, и т.д., то условимся называть пирамиду n-угольной, тогда справедливо:
У n-угольной пирамиды:
n+1 вершин (вершины основания и вершина пирамиды);
n+1 граней (боковые грани + основание);
2n ребер (ребра основания + ребра боковых граней).
У любой пирамиды все грани, кроме основания - треугольники. Основание тоже треугольник только в треугольной пирамиде (т.н. тэтраэдр)
Например: если в основании треугольник, то 4 вершины, 4 грани, 6 рёбер; в основании квадрат - 5 вершин, 5 граней, 8 рёбер и т.д.
Пошаговое объяснение:
Поскольку пирамида может иметь в основании и треугольник, и квадрат, и пятиугольник, и т.д., то условимся называть пирамиду n-угольной, тогда справедливо:
У n-угольной пирамиды:
n+1 вершин (вершины основания и вершина пирамиды);
n+1 граней (боковые грани + основание);
2n ребер (ребра основания + ребра боковых граней).
У любой пирамиды все грани, кроме основания - треугольники. Основание тоже треугольник только в треугольной пирамиде (т.н. тэтраэдр)
Например: если в основании треугольник, то 4 вершины, 4 грани, 6 рёбер; в основании квадрат - 5 вершин, 5 граней, 8 рёбер и т.д.
ответ: 75 км/час.
Пошаговое объяснение:
Решение.
x км/час - скорость 1 автомобиля. Тогда
x+18 км/час - скорость 2 автомобиля.
950 км 1 автомобиль проехал за 950/x часов, а
2 автомобиль проехал за 950/(x+18) часов,
Разность во времени равна 4 часа.
950/x - 950/(x+18) = 4;
950(x+18)-950x=4x(x+18);
950x+ 17100-950x=4x²+72x;
4x²+72x-17100=0;
x²+18x-4275=0:
По т. Виета:
x1+x2=-18; x1*x2=-4275;
x1=57; x2=-75 - не соответствует условию.
x= 57 км/час - скорость 1 автомобиля.
x+18 = 57+18 = 75 км/час - скорость 2 автомобиля.
Поскольку пирамида может иметь в основании и треугольник, и квадрат, и пятиугольник, и т.д., то условимся называть пирамиду n-угольной, тогда справедливо:
У n-угольной пирамиды:
n+1 вершин (вершины основания и вершина пирамиды);
n+1 граней (боковые грани + основание);
2n ребер (ребра основания + ребра боковых граней).
У любой пирамиды все грани, кроме основания - треугольники. Основание тоже треугольник только в треугольной пирамиде (т.н. тэтраэдр)
Например: если в основании треугольник, то 4 вершины, 4 грани, 6 рёбер; в основании квадрат - 5 вершин, 5 граней, 8 рёбер и т.д.
Пошаговое объяснение:
Поскольку пирамида может иметь в основании и треугольник, и квадрат, и пятиугольник, и т.д., то условимся называть пирамиду n-угольной, тогда справедливо:
У n-угольной пирамиды:
n+1 вершин (вершины основания и вершина пирамиды);
n+1 граней (боковые грани + основание);
2n ребер (ребра основания + ребра боковых граней).
У любой пирамиды все грани, кроме основания - треугольники. Основание тоже треугольник только в треугольной пирамиде (т.н. тэтраэдр)
Например: если в основании треугольник, то 4 вершины, 4 грани, 6 рёбер; в основании квадрат - 5 вершин, 5 граней, 8 рёбер и т.д.