<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ. Но
< DAM=<BAM, т.к. АМ - биссектриса, значит
<BMA=<BAM, и треуг-ик АВМ равнобедренный (т.к. углы при его основании АМ равны). Значит АВ=ВМ.
<CMD=<ADM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DM. Но
<ADM=CDM, т.к. DM - биссектриса, значит
<CMD=<CDM, и треуг-ик DCM также равнобедренный (углы при его основании DM равны). Т.е.
АВ=CD=BM=CM
Пусть АВ будет х (соответственно, CD, BM и СМ также будут х). Зная, что AN=10, запишем:
АВ=AN-BN, BN=AN-AB=10-x
Рассмотрим треуг-ки BNM и CDM. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка. В нашем случае:
- ВМ=СМ;
- <BMN=<CMD как вертикальные углы;
- <MBN=<MCD как накрест лежащие углы при пересечении двух параллельных прямых AN и CD секущей ВС. Значит
BN=CD=x
Выше выведено, что BN=10-x. Приравняем 10-х и х, раз речь идет об одном и том же:
Пусть х км/ч- собственная скорость катера, тогда (х + 3) км/ч - скорость по течению, а (х - 3) км/ч - скорость против течения. Значит, 5 км против течения катер за 5/(х - 3) ч, 14 км по течению катер за 14/(х + 3) ч, а 18 км по озеру - за 18/х ч. Составим и решим уравнение:
5/(х - 3) + 14/(х + 3) = 18/х;
умножим обе части уравнения на х(х - 3)(х + 3) ≠ 0 и получим:
<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ. Но
< DAM=<BAM, т.к. АМ - биссектриса, значит
<BMA=<BAM, и треуг-ик АВМ равнобедренный (т.к. углы при его основании АМ равны). Значит АВ=ВМ.
<CMD=<ADM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DM. Но
<ADM=CDM, т.к. DM - биссектриса, значит
<CMD=<CDM, и треуг-ик DCM также равнобедренный (углы при его основании DM равны). Т.е.
АВ=CD=BM=CM
Пусть АВ будет х (соответственно, CD, BM и СМ также будут х). Зная, что AN=10, запишем:
АВ=AN-BN, BN=AN-AB=10-x
Рассмотрим треуг-ки BNM и CDM. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка. В нашем случае:
- ВМ=СМ;
- <BMN=<CMD как вертикальные углы;
- <MBN=<MCD как накрест лежащие углы при пересечении двух параллельных прямых AN и CD секущей ВС. Значит
BN=CD=x
Выше выведено, что BN=10-x. Приравняем 10-х и х, раз речь идет об одном и том же:
10-х=х
2х=10
х=5
АВ=CD=5 см, AD=BC=5+5=10 см
Р ABCD = 2AB+2BC=2*5+2*10=30 см
Пусть х км/ч- собственная скорость катера, тогда (х + 3) км/ч - скорость по течению, а (х - 3) км/ч - скорость против течения. Значит, 5 км против течения катер за 5/(х - 3) ч, 14 км по течению катер за 14/(х + 3) ч, а 18 км по озеру - за 18/х ч. Составим и решим уравнение:
5/(х - 3) + 14/(х + 3) = 18/х;
умножим обе части уравнения на х(х - 3)(х + 3) ≠ 0 и получим:
5х(х + 3) + 14х(х - 3) = 18(х - 3)(х + 3),
5х² + 15х + 14х² - 42х = 18(х² - 9),
19х² - 27х = 18х² - 162,
х² - 27х + 162 = 0,
D = (-27)² - 4 · 1 · 162 = 729 - 648 = 81; √81 = 9.
х₁ = (27 - 9)/(2 · 1) = 18/2 = 9, х₂= (27 + 9)/(2 · 1) = 36/2 = 18.
Значит, собственная скорость катера может быть либо 9 км/ч, либо 18 км/ч.
ответ: 9 км/ч или 18 км/ч.