Нечётными и чётными называются функции, обладающие симметрией относительно изменения знака аргумента. Это понятие важно во многих областях математического анализа, таких как теория степенных рядов и рядов Фурье. Название связано со свойствами степенных функций: функция {\displaystyle f(x)=x^{n}}f(x)=x^{n} чётна, когда {\displaystyle n}n чётно, и нечётна, когда {\displaystyle n}n нечётно.
{\displaystyle f(x)=x}f(x) = x — пример нечётной функции
{\displaystyle f(x)=x^{2}}f(x) = x^2 — пример чётной функции
{\displaystyle f(x)=x^{3},}f(x) = x^3, нечётная
{\displaystyle f(x)=x^{3}+1}f(x) = x^3+1 ни чётная, ни нечётная
Нечётная функция — функция, меняющая значение на противоположное при изменении знака независимой переменной (график её симметричен относительно центра координат).
Чётная функция — функция, не изменяющая своего значения при изменении знака независимой переменной (график её симметричен относительно оси ординат).
Ни чётная, ни нечётная функция (функция общего вида). В эту категорию относят функции, не подпадающие под предыдущие 2 категории.
Для начала надо вычислить площадь оклеиваемого периметра то есть сумму длин сторон умноженную на высоту. длинна одной стороны равна 5 метров. следовательно: 5 умножаем на 4 и получаем 20метров. теперь полученные данные умножаем на высоту (5м) и получаем 100 квадратных метров. из этого вычитаем известную нам площадь окна и двери (9кв.м) и получаем 91кв метр. площадь одного куска шпалер = 4кв.м. значит мы 91 делим на 4 и получаем 22,75 куска шпалер. теперь это все умножаем на 8лари и получаем сумму необходимую на покупку шпалер, то есть 182 лари
Нечётными и чётными называются функции, обладающие симметрией относительно изменения знака аргумента. Это понятие важно во многих областях математического анализа, таких как теория степенных рядов и рядов Фурье. Название связано со свойствами степенных функций: функция {\displaystyle f(x)=x^{n}}f(x)=x^{n} чётна, когда {\displaystyle n}n чётно, и нечётна, когда {\displaystyle n}n нечётно.
{\displaystyle f(x)=x}f(x) = x — пример нечётной функции
{\displaystyle f(x)=x^{2}}f(x) = x^2 — пример чётной функции
{\displaystyle f(x)=x^{3},}f(x) = x^3, нечётная
{\displaystyle f(x)=x^{3}+1}f(x) = x^3+1 ни чётная, ни нечётная
Нечётная функция — функция, меняющая значение на противоположное при изменении знака независимой переменной (график её симметричен относительно центра координат).
Чётная функция — функция, не изменяющая своего значения при изменении знака независимой переменной (график её симметричен относительно оси ординат).
Ни чётная, ни нечётная функция (функция общего вида). В эту категорию относят функции, не подпадающие под предыдущие 2 категории.