Масса шерстяной пряжи, которая расходуется на изготовление вязаного изделия,
зависит от вязки, от плотности вязки и плотности используемой шерсти.
Лёгкая пряжа весит около 120 г на 100 м нити, а тяжёлые виды могут весить до 600 г
на 100 м. Даже опытный мастер, начиная вязать свитер или большой шарф, может
неверно оценить на глаз нужное количество пряжи. Часто поступают так: сначала
мастер вяжет небольшой образец, измеряет его площадь и смотрит, сколько граммов
или метров нити ушло на него. Таким образом, зная площадь будущего изделия, мастер
может довольно точно оценить, сколько граммов или сколько метров пряжи
потребуется, чтобы связать всё изделие целиком.
Марина собирается связать шарф длиной 130 см и шириной 50 см. Ей нужно узнать, сколько
потребуется пряжи. Для этого она связала пробный образец размером 10 см 10 см. ×
На образец у неё ушло 23 м пряжи. Хватит ли Марине на шарф трёх мотков пряжи, по 550 м
в каждом?
Запишите решение и ответ.
1)Дано линейное уравнение:
700-y = 98*5
Переносим свободные слагаемые (без y)
из левой части в правую, получим:
-y = -210
Разделим обе части ур-ния на -1
y = -210 / (-1)
Получим ответ: y = 210
2)Дано линейное уравнение:
552+a = 1000-111
Приводим подобные слагаемые в правой части ур-ния:
552 + a = 889
Переносим свободные слагаемые (без a)
из левой части в правую, получим:
a = 337
3)Дано линейное уравнение:
x-450 = 156*3
Переносим свободные слагаемые (без x)
из левой части в правую, получим:
x = 918
4)Дано линейное уравнение:
c+87 = 59*8
Переносим свободные слагаемые (без c)
из левой части в правую, получим:
c=385
Лайк и лучший ответ
Пошаговое объяснение:
Задача 1.
1. После понижения цены на 10%, билет станет стоить:
35*0,9=31,5 руб
2. На 120 рублей можно будет купить:
120:31,5=3,8 ⇒ 3 билета.
ответ: 3 билета.
Задача 2.
1. (4-3i)/(2+i)=(4-3i)(2-i)/(2+i)(2-i)=(8-4i-6i-3i²)/(4-i²). Т.к. i²=-1, делаем замену:
(8-10i-3*(-1))/(4-(-1))=(8-10i+3)/5=(5-10i)/5=5(1-2i)/5=1-2i
2. (1+i)³=1³+3*1²*i+3*1*i²+i³=1+3i+3i²+i³. Т.к. i²=-1, делаем замену:
1+3i+3*(-1)+(-1)*i=1+3i-3-i=-2+2i
3. i³-i¹⁰⁰=i²*i-(i²)⁵⁰. Т.к. i²=-1, делаем замену:
(-1)*i-(-1)⁵⁰=-i-1
Задача 2.
1. (17-6i)/(3-4i)=(17-6i)*(3+4i)/(3-4i)*(3+4i)=(51-18i+68i-24i²)/(9-16i²). Т.к. i²=-1, делаем замену:
(51-50i-24*(-1))/(9-16*(-1))=(75+50i)/25
2. (1-i)³= 1³-3*1²*i+3*1*i²-i³=1-3i+3i²-i³. Т.к. i²=-1, делаем замену:
1-3i+3*(-1)-(-1)*i=1-3i-3+i=-2i-2
3. i^40-i^21=(i²)²⁰-i²⁰⁺¹. Т.к. i²=-1, делаем замену:
(-1)²⁰-(-1)²⁰*i=(-1)²⁰*(1-i)=1*(1-i)=1-i
Задача 4.
Пусть х - производительность первого рабочего, у - производительность второго рабочего, тогда 60/х-60/у=3.
За один час оба рабочих производят Х+у деталей.
Составим систему уравнений:
60/х-60/у=3
х+у=30
Первое упростим, из второго уравнения выразим х:
60(х+у)/ху=3 ⇒ 20(х+у)=ху
х=30-у
Подставим в первое уравнение выраженный х, решим уравнение:
20(30-у-у)=у(30-у)
600-40у=30у-у²
у²-70у+600=0
Д-70*70-4*600=2500
у₁=(70-50)/2=10 х₁=30-10=20
у₂=(70+50)/2=60 х₂=30-60=-30 - не удовлетворяет условию
Время , за которое второй рабочий производит 90 деталей: 90/10=9 часов.
ответ: 9 часов
Задача 5.
Пусть х - количество десятков, у - количество единиц. Составим систему уравнений:
у-х=2
(х+у)*(10х+у)=280
Выразим из первого уравнения у и подставим во второе.
у=2+х
(х+2+х)(10х+2+х)=280
Решим получившееся уравнение:
(2х+2)(11х+2)=280
22х²+4х+22х+4=280
22х²+26х-276=0
Д=26²+4*22*276=24964=158²
х₁=(-26+158)/(2*22)=3
х₂=(-26-158)/(2*22) <0 - не удовлетворяет условию
у=2+3=5
Искомое число: 35
ответ: 35