Для того чтобы найти экстремум функции найдем сперва ее производную
Теперь приравняем производную к нолю и решим полученное уравнение 6x(x-1)=0 6х=0 х-1=0 х=0 х=1 Нанесем полученные точки на ось Ох и определим знак функции. ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка 1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0 2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0 3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0 И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции ответ:х=0 и х=1
Это число 1143. Как нетрудно проверить, среди сумм подряд идущих цифр есть 1, 2=1+1, 3, 4, 5=1+4, 6=1+1+4, 7=4+3, 8=1+4+3, 9=1+1+4+3.
Трехзначным или меньше это число быть не может, т.к. у 3-значного числа может быть не более 3+2+1=6 различных сумм подряд идущих цифр. Дальше, т.к. сумма всех цифр должна быть не меньше 9, то имея первые две единицы, получается, что сумма 3-ей и 4-ой цифры должна быть не меньше 7. С другой стороны, чтобы среди суммы цифр была 3, надо среди цифр иметь либо 1, либо 2, либо 3. Легко проверяется, что 111а, 11а1, где a≥6, 112b, 11b2, где b≥5 не подходят. Значит остаются варианты, либо 113а, либо 11а3, c a≥4. При a=4 видим, что подходит 1143.
Теперь приравняем производную к нолю и решим полученное уравнение
6x(x-1)=0
6х=0 х-1=0
х=0 х=1
Нанесем полученные точки на ось Ох и определим знак функции.
ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка
1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0
2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0
3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0
И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции
ответ:х=0 и х=1
Как нетрудно проверить, среди сумм подряд идущих цифр есть
1, 2=1+1, 3, 4, 5=1+4, 6=1+1+4, 7=4+3, 8=1+4+3, 9=1+1+4+3.
Трехзначным или меньше это число быть не может, т.к. у 3-значного числа может быть не более 3+2+1=6 различных сумм подряд идущих цифр. Дальше, т.к. сумма всех цифр должна быть не меньше 9, то имея первые две единицы, получается, что сумма 3-ей и 4-ой цифры должна быть не меньше 7. С другой стороны, чтобы среди суммы цифр была 3, надо среди цифр иметь либо 1, либо 2, либо 3. Легко проверяется, что 111а, 11а1, где a≥6, 112b, 11b2, где b≥5 не подходят. Значит остаются варианты, либо 113а, либо 11а3, c a≥4. При a=4 видим, что подходит 1143.