Составляющие Смеситель представляет собой изделие, состоящее из следующих элементов: Корпус с присоединительными патрубками для подключения прибора к водопроводной системе. Механизмы регулирования силы потока горячей и холодной воды (может устанавливаться один совмещенный механизм). Органы управления (рычаги, «джойстики» и маховики), позволяющие приводить вышеупомянутые механизмы в движение. Излив — трубка, в которую поступает смесь горячей и холодной воды. Она может представлять собой как часть корпуса, так и отдельную деталь. В последнем случае излив удерживается в корпусе двумя пластиковыми кольцами и может поворачиваться в стороны. Аэратор – сеточка в выходном отверстии излива, увеличивающая сечение струи. В корпусе смесителя для душа имеются патрубок для подключения гибкого шланга с душевой насадкой и механизм переключения «душ/излив». Помимо основных элементов смеситель может иметь отвод для подключения стиральной или посудомоечной машины. Выбирая смеситель, отдавайте предпочтение более тяжелым моделям. Качественные материалы – латунь, бронза или нержавеющая сталь – весят больше, чем хлипкий и недолговечный.
а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
Пошаговое объяснение: