В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
palienkoana
palienkoana
12.12.2022 03:45 •  Математика

Материальная точка движется прямолинейно по закону x(t)=1/6t^2+5t+28. Где x - расстояние от точки отчёта в метрах, t - время в секундах, Измеренные с начала движения. Найдите её скорость и ускорение в момент времени t=6.

Показать ответ
Ответ:
Maksim200316
Maksim200316
16.04.2022 14:32

Часто на картах мерой масштаба служит сантиметр, а мерой местности - метр или километр.

Наиболее применяемые карты в метрических мерах - это крупномасштабные карты, к ним относятся следующие:

- карта в масштабе 250 м в 1 см (1:25 000);

- карта в масштабе 500 м в 1 см (1:50 000);

- карта в масштабе 1 км в 1 см (1:100 000).

Масштабы карт обозначаются в нижнем обрезе карты за рамкой.

Измеряем линейкой расстояние между пунктами А и В

Например, если нам дан масштаб 1/10 000, или 1:10 000, или 10 000, то это значит, что каждой линии, взятой с карты, соответствует на местности линия в 10 000 раз большая.

Так, если расстояние между пунктами А и В = 10 см - на карте будет действительной величиной этой линии на местности 10х10 000 = 100 000 см, или 100 000/100 = 1000 м, или 1 км.

Пошаговое объяснение:

0,0(0 оценок)
Ответ:
messageman1
messageman1
07.04.2021 11:17

у min = -3,833

у max = 1,5

Пошаговое объяснение:

1) Исследуем функцию на наличие локальных экстремумов. Иначе говоря: есть ли на участке от -1 до + 3 такие точки, в которых график функции поднимается вверх, а затем опускается вниз, либо наоборот опускается вниз, а затем поднимается; в первом случае это будет максимум функции, а во втором - минимум. При этом, если не сделать такого исследования, то можно ошибочно принять за минимум значение у в крайней левой точке, где  х = -1 (понятно, что эта функция растёт) либо (также ошибочно) принять за максимум функции крайнюю правую точку графика, где х = 3. А получится так, что выбросы вверх или вниз внутри этого участка окажутся выше или ниже. Именно с этой целью делается проверка.

2) Общее правило поиска экстремумов функции: в точках экстремумов первая производная равна нулю.

Первая производная - это касательная к графику; в точках экстремумов она равна нулю.

В данном случае - все табличные значения производной:

а) константа выносится за знак производной (в первой дроби константа = 1/3; во второй дроби константа равна 3/2; в 2х константа равна 2);

б) производная степени равна произведения показателя степени на х в степени на 1 меньше (производная х^3 = 3x^2; производная х^2 = 2х; производная х = 1).  

Получаем искомое уравнение первой производной, которое приравниваем к нулю:

х^2 - 3x + 2=0

Корнями этого уравнения являются:

х1 = 1, х2 = 2.

3) Анализируем уравнение производной до точки +1. Подставим в уравнение производной любое значение, которое находится на числовой оси х левее точки +1. Удобнее всего взять 0. При х = 0 производная равна +2. Знак плюс говорит о том, что функция возрастает, а это значит, что точка х1 = + 1 является локальным максимумом:

у = 0,833.

4) Аналогично можно убедиться в том, что на участке от х=+1 до х2=+2 функция убывает. Например, возьмём х = 1,5. Получаем ответ: - 0,25. Знак минус производной говорит о том, что функция убывает и в точке х2 = 2 принимает минимальное значение (локальный минимум):

у = 0,667.

5) После точки х=+2 производная больше 0, следовательно, функция возрастает.

6) Проверяем крайние точки на глобальные минимум и максимум:

а) при х = -1 функции равна -3,833; затем, как мы установили, она до + 1 возрастает; затем на участке от +1 до + 2 уменьшается, но только до значения 0,677, которое не перекрывает -3,833;

вывод: у min = -3,833.

б) аналогично делаем вывод о том, что при х = 3, функция принимает максимальное значение:

у max = 1,5

наименьшее значение функции у min = -3,833

наибольшее значение функции у max = 1,5

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота