Между станциями Бахарево и Овсино 2 километра прямой дороги. Почтальон Коля выехал на велосипеде к железной дороге между станциями из леса в 200 метрах от Овсино и увидел, что к Овсино в направлении к Бахарево подъезжает поезд, на который ему нужно успеть. Коля заметил, что если он сейчас поедет на велосипеде в сторону Овсино, он окажется там одновременно с поездом. Но и если он поедет на велосипеде в сторону Бахарево, он также окажется там одновременно с поездом, который успеет преодолеть весь перегон от Овсино до Бахарево. Каково сейчас расстояние между Колей и поездом? (Условно считай, что скорость не менялась при перегоне!) ответ: м.
Дано:в лес --- 82 чел;
на озеро 123 чел;
автобусы с равным числом мест и все места заняты.
Найти:число автобусов и количество человек в каждом
Поскольку по условию автобусы с равным числом мест и нет ни свободных, ни людей без места, разложим численность отдыхающих в автобусе на множители, чтобы найти общий делитель.
82 = 2*41
123 = 3*41, т.е. количество человек в каждом автобусе может быть только 41
82 : 41 = 2 (автобуса); в лес;
123 : 41 = 3 (автобуса) на озеро;
2 + 3 = 5 (автобусов) - всего было
ответ:5 автобусов; 41 чел в каждом
Примечание: можно не раскладывать каждое число на множители
123 - 82 = 41 (чел) разница в количестве человек, она кратна числу человек в автобусе
41 - число простое и на множители не раскладывается, значит, это и есть число человек в одном автобусе.
Одним из наиболее мощных методов интегрирования является замена переменной в интеграле. Поясним суть этого метода. Пусть F'(x)=f(x), тогда
\int f(x)\,dx= \int F'(x)\,dx= \int d\bigl(F(x)\bigr)=F(x)+C.
Но в силу инвариантности формы дифференциала равенство d\bigl(F(x)\bigr)=F'(x)\,dx= f(x)\,dx остается справедливым и в случае, когда {x} — промежуточный аргумент, т.е. x=\varphi(t). Это значит, что формула \textstyle{\int f(x)\,dx=F(x)+C} верна и при x=\varphi(t). Таким образом,
\int f\bigl(\varphi(t)\bigr)\,d\bigl(\varphi(t)\bigr)= F\bigl(\varphi(t)\bigr)+C, или \int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= F\bigl(\varphi(t)\bigr)+C.
Итак, если F(t) является первообразной для f(x) на промежутке {X}, а x=\varphi(t) — дифференцируемая на промежутке {T} функция, значения которой принадлежат {X}, то F\bigl(\varphi(t)\bigr) — первообразная для f\bigl(\varphi(t)\bigr)\varphi'(t),~t\in T, и, следовательно,
\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= \int f(x)\,dx\,.
Эта формула позволяет свести вычисление интеграла \textstyle{\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt} к вычислению интеграла \textstyle{\int f(x)\,dx}. При этом мы подставляем вместо \varphi(t) переменную {x}, а вместо \varphi'(t)\,dt дифференциал этой переменной, т. е. dx. Поэтому полученная формула называется формулой замены переменной под знаком неопределенного интеграла. Она используется на практике как "слева направо", так и "справа налево". Метод замены переменной позволяет сводить многие интегралы к табличным. После вычисления интеграла \textstyle{\int f(x)\,dx} надо снова заменить {x} на \varphi(t).
Пример 1. Вычислим \int\cos2t\,dt.
Решение. Введем новую переменную {x}, положив 2t=x. Тогда 2\,dt=dx,~dt=\frac{1}{2}\,dx и, следовательно,
\int\cos2t\,dt= \int\cos{x}\,\frac{1}{2}\,dx= \frac{1}{2}\int\cos{x}\,dx= \frac{1}{2}\sin{x}+C= \frac{1}{2}\sin2t+C.
Замечание. Вычисление короче записывают так:
\int\cos2t\,dt= \frac{1}{2}\int\cos2t\,d(2t)= \frac{1}{2}\sin2t+C.
Пошаговое объяснение: