Может кто сможет решить, буду очень благодарен. Даны координаты вершин треугольника ABC :
A(−1;4); B(11;− 5); C(15;17).
Необходимо найти:
1. длину стороны AB;
2. уравнение сторон AB и BC и их угловые коэффициенты;
3. угол ψ между прямыми AB и BC в радианах;
4. уравнение высоты CD и ее длину;
5. уравнение медианы AE и координаты точки K пересечения этой
медианы с высотой CD ;
6. уравнение прямой L , которая проходит через точку K параллельно к стороне AB;
7. координаты точки ( , ) F F F x y , которая находится симметрично точке A относительно прямой CD
(3 9/20+2.75):2=(3 9/20+2 3/4):2=(3 9/20+2 16/20):2=(69/20+56/20):2=(125/20):2=(125/40)=3 5/40=3.125
(33.74-5 1/25):7=(33 74/100-5 4/100):7=(3374/100-504/100):7=(2870/100):7=(2870/100)*(1/7)=(2870/700)=4 70/700=4.1
(37 1/5-6.8):8=(37 2/10-6 8/10):8=(372/10-68/10):8=(304/10):8=(304/10)*(1/8)=38:10=3.8
(14.7+23 4/5):11=(14 7/10+23 8/10):11=(147/10+238/10):11=(385/100):11=(385/100)*(1/11)=(35/100)=0.35
(61.68-4 2/25):12=(61 68/100-4 8/100):12=(6168/100-408/100):12=(5760/100):12=(5760/100)*(1/12)=(480/100)=4.8
1)НОД=10
2) НОК= 2
Пошаговое объяснение:
Разложим на простые множители 30
30 = 2 • 3 • 5
Разложим на простые множители 40
40 = 2 • 2 • 2 • 5
Выберем одинаковые простые множители в обоих числах.
2 , 5
Находим произведение одинаковых простых множителей и записываем ответ
НОД (30; 40) = 2 • 5 = 10
2)Разложим на простые множители 12
12 = 2 • 2 • 3
Разложим на простые множители 50
50 = 2 • 5 • 5
Выберем одинаковые простые множители в обоих числах.
2
Находим произведение одинаковых простых множителей и записываем ответ
НОД (12; 50) = 2 = 2