Можно ли расставить 49 целых чисел не обязательно различных в клеточки квадратной таблицы 7×7(по одному числу в каждую клетку)так чтобы сумма чисел во всех квадратаз размерами 2×2 и3×3 делилась на 2018,а сумма чисел таблицы не делилась на 2018?
Натуральные числа — это целые положительные числа. Здесь только 18.
Целые числа — это натуральные числа, ноль, а также числа, противоположные натуральным. Целые числа: 18, 0. 10
Рациональные числа — числа, которые могут быть представлены дробью, у которой числитель — целое число, а знаменатель — натуральное. Периодические дроби рациональны. Рациональные числа: -73, 18, -1.176176, 0, 4.1, 11+5/7, 9/7, 3.14, 5.02002.
Иррациональные числа — это действительные числа, не являющиеся рациональными: 3+π, π/9, -sqrt(97).
Заданы координаты вершин пирамиды:
A(2,1,2), B(-2,3,4), C(-6,-3,3), D(4,5,-1)Найти:
1) скалярное произведение АВ. AC и угол между ними.
Находим векторы:
АВ = (-2-2; 3-1; 4-2) = (-4; 2; 2).
Модуль равен √((-4)² + 2² + 2²) = √24 = 2√6.
АС = (-6-2; -3-1; 3-2) = (-8; -4; 1).
Модуль равен √((-8)² + (-4)² + 1²) = √81 = 9.
Находим косинус угла между этими векторами.
cos(AB_AC) = (-4*(-8) + (2*(-4) + 2*1)/(2√6*9) = 26/(18√6) = 13/(9√6).
Скалярное произведение АВ*АС = 26 (расчёт приведен в косинусе А).
Угол А = arccos(13/(9√6) = 53,8648 градуса.
2) вектор р= [AB x AС|, площадь грани ABC;
р= [AB x AС] = i j k| i j
-4 2 2| -4 2
-8 -4 1| -8 -4 = 2i - 16j + 16k + 4j + 8i + 16k =
= 10i - 12j + 32k.
p = (10; -12; 32).
Площадь АВС равна половине модуля полученного векторного произведения.
S = (1/2)|p| = (1/2)√(10² + (-12)² + 32²) = (1/2)√1268 ≈ 35,609 кв. ед.
3) объем пирамиды.
V = (1/6)*|(ABxAC)*AD|.
Произведение [ABxAC] найдено выше: (10; -12; 32)
Находим вектор AD.
Вектор АD={xD-xA, yD-yA, zD-zA}.
X Y Z
2 4 -3
Модуль = √29 ≈ 5,38516.
Находим |(ABxAC)*AD|:
10 -12 32
х
2 4 -3
20 -48 -96 = |-126| = 126.
V = (1/6)*126 = 21 куб. ед.
Натуральные числа — это целые положительные числа. Здесь только 18.
Целые числа — это натуральные числа, ноль, а также числа, противоположные натуральным. Целые числа: 18, 0. 10
Рациональные числа — числа, которые могут быть представлены дробью, у которой числитель — целое число, а знаменатель — натуральное. Периодические дроби рациональны. Рациональные числа: -73, 18, -1.176176, 0, 4.1, 11+5/7, 9/7, 3.14, 5.02002.
Иррациональные числа — это действительные числа, не являющиеся рациональными: 3+π, π/9, -sqrt(97).