Музыка и поэзия. Урок 2 Что такое мелодекламация? Мелодекламация – это художественное чтение стихов или прозы с использованием музыки. Мелодекламация – это исполнение мелодии песни без сохранения тональности и ритма. Мелодекламация – это чтение стихов и рассказов под фоновую музыку и звуки природы. Мелодекламация – это художественное чтение повестей и поэм под ритмическую, зажигательную музыку. На
В сантиметрах:
1 см = 10 мм
9 мм = 9 : 10 = 0,9 см
29 мм = 29 : 10 = 2,9 см
31 мм = 31 : 10 = 3,1 см
256 мм = 256 : 10 = 25,6 см
491 мм = 491 : 10 = 49,1 см
12 см 3 мм = 12 + 3 : 10 = 12 + 0,3 = 12,3 см
8 см 5 мм = 8 + 5 : 10 = 8 + 0,5 = 8,5 см
В центнерах:
1 ц = 100 кг
3 ц 24 кг = 3 + 24 : 100 = 3 + 0,24 = 3,24 ц
11 ц 8 кг = 11 + 8 : 100 = 11 + 0,08 = 11,08 ц
5 ц 24 кг = 5 + 24 : 100 = 5 + 0,24 = 5,24 ц
632 кг = 632 : 100 = 6,32 ц
3 750 кг = 3 750 : 100 = 37,5 ц
41 141 кг = 41 141 : 100 = 411,41 ц
В минутах:
1 мин. = 60 с.
2 мин. 33 с. = 2 + 33 : 60 = 2 + 0,55 = 2,55 мин.
5 мин. 42 с. = 5 + 42 : 60 = 5 + 0,7 = 5,7 мин.
9 мин. 54 с. = 9 + 54 : 60 = 9 + 0,9 = 9,9 мин.
а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
Пошаговое объяснение: