На доске написано несколько натуральных чисел, в записи которых могут быть только цифры 1 и 6.
а) Может ли сумма этих чисел быть равна 173? Объяснить почему и как подробно.
б) Может ли сумма этих чисел быть равна 109? Объяснить почему и как подробно.
в) Какое наименьшее количество чисел может быть на доске, если их сумма равна 1021. Объяснить почему и как подробно, примеры решения.
ответ:0,94.
Стрелок ведет огонь по цели, движущейся на него. Вероятность попадания в цель при первом выстреле равна 0,4 и увеличивается на 0,1 при каждом последующем выстреле. Какова вероятность получить два попадания при трех независимых выстрелах?
ответ: 0,38.
Из двух полных наборов шахмат наудачу извлекают по одной фигуре. Какова вероятность того, что обе фигуры окажутся слонами?
ответ: 1/64.
Из группы, состоящей из четырех юношей возраста 17, 18, 19 и 20 лет и четырех девушек тех же лет, наугад выбирают двух человек. Какова вероятность того, что:
а) оба выбранных окажутся юношами;
б) оба окажутся юношами, если известно, что один из выбранных юноша;
в) оба окажутся юношами, если известно, что один из них юноша, которому не более 18 лет;
г) оба окажутся юношами, если известно, что один из них юноша 17 лет?
ответ: 3/14, 3/11, 5/13, 3/7.
В одной студенческой группе обучаются 24 студента, во второй – 36 студентов и в третьей – 40 студентов. По математическому анализу получили отличные отметки 6 студентов первой группы, 6 студентов второй группы и 4 студента третьей группы. Наугад выбранный студент оказался получившим по математическому анализу отметку «отлично». Какова вероятность того, что он учится в первой группе?
ответ: 0,375.
Преподаватель экзаменует незнакомую ему группу по экзаменационным билетам, содержащим по три вопроса. Он знает, что в предыдущую сессию в этой группе было 27 успевающих студентов, из них шесть отличников, и трое неуспевающих студентов, и считает, что отличники а) А – дубль, В – на одной из половин кости 6 очков;
б) А – дубль, В – сумма очков нечетна;
в) А – на одной из половин кости «пустышка», В – сумма очков больше шести;
г) А – сумма очков больше четырех, В – сумма очков нечетна.
Оскільки 24 серпня 1991 року Верховна рада УРСР прийняла постанову про проголошення незалежності України, що набула чинності відразу після прийняття, а також Акт проголошення незалежності України, який 1 грудня 1991 року підтвердив народ на всеукраїнському референдумі, виникла необхідність змінити дату святкування Дня незалежності України. Тому 20 лютого 1992 року Верховна рада України прийняла постанову "Про День незалежності України" (укр. Про День незалежності України)