На клетчатом поле 7 ×
7 в левой верхней клетке находится робот. В остальных клетках поля записаны различные буквы. Робот умеет шагать в соседнюю клетку по вертикали вниз или по горизонтали вправо. Покидая клетку, робот стирает записанную в ней букву и записывает ее себе в память. Как только робот доходит до клетки "Запись", он записывает результат в компьютер. Вам необходимо составить алгоритм для робота, результатом работы которого будет запись слова "ГИПЕРССЫЛКА" в память компьютера.
Робот управляется с команд, которые записываются цифрами 1 и 2. Каждая из этих цифр обозначает следующее:
1 - Шагнуть вправо по горизонтали на 1 клетку.
2 - Шагнуть вниз по вертикали на 1 клетку.
Вам необходимо записать последовательность команд (последовательность цифр из 1 и 2), выполняя которые робот сможет записать в память компьютера слово "ГИПЕРССЫЛКА".
Выходить за пределы поля робот не может. В случае, если роботу поступает команда, которая выводит его за пределы поля, он игнорирует ее.
Всадник и велосипедист одновременно выехали из двух пунктов навстречу друг другу. Через какое-то время они пересеклись. На тот момент велосипедист проехал путь 45 км. На протяжении всего пути и велосипедист, и всадник ехали, не изменяя свою скорость. Сколько километров проездил на лошади всадник, на момент его пересечения с велосипедистом, если скорость велосипедиста равна 15 км/ч, а скорость всадника равна 12 км/ч?
Решение Задачи:
1) 45 км ÷ 15 км/ч = 3 часа
2) 12 км/ч × 3 часа = 36 км
ответ: 36 километров проехал всадник на момент пересечения с велосипедистом.
Пошаговое объяснение:
Пусть X и Y - какие-то множества. Имеет место функция, определённая на множестве X со значениями на множестве Y, если в силу некоторого закона f каждому элементу x∈X ставится в соответствие один и только один элемент y∈Y.
Это записывается в виде
y = f(x).
Другими словами, с функции y = f(x) множество X отображается в множество Y. Поэтому функцию называют также отображением.
Например, авиапассажиры сидят в креслах салона пассажирского самолёта. Пусть X - множество пассажиров, а Y - множество кресел салона. Тогда возникает соответствие f : каждому пассажиру x∈X сопоставляется то кресло y = f(x), в котором он сидит.
Наблюдается, таким образом, простой пример функции, областью определения которой является множество X пассажиров, а областью значений - множество f(X) занимаемых ими кресел. Если заполнены не все кресла Y, то множество значений функции будет подмножеством Y, не совпадающим со всем множеством Y.
Если в кресле находятся два пассажира и (например, мать и ребёнок), то это никак не противоречит определению функции f, которая и , и однозначно ставит в соответствие кресло . При этом такая функция принимает одно и то же значение при разных значениях и аргумента, подобно тому как числовая функция y = f(x) = x² принимает одно и то же значение 9 при x = - 3 и при x = 3.
Если, однако, какому-то пассажиру удастся сесть сразу в два кресла и , то нарушится принцип однозначной определённости значений функции, поэтому такая ситуация не является функциональной в смысле данного выше определения функций, поскольку требуется, чтобы каждому значению x аргумента соответствовало бы одно определённое значение y = f(x) функции.
В математическом анализе часто X обозначают как D (область определения функции), а Y как E (область значений функции) и при этом D и E называют подмножествами R (множества действительных чисел). На сайте есть урок Как найти область определения функции.
Как нетрудно догадаться по названию нашего сайта, он назван так в честь функции от икса или f(x). И это неслучайно. Функции составляют бОльшую часть предметов рассмотрения не только математического анализа, но и дискретной математики, а также широко используются в программировании, где от профессионалов требуется выделять однотипные вычисления в функции.
Пример 1. Даны множества A = {a, b, c, d, e} и L = {l, m, n}. Можно ли между элементами этих множеств установить такое соответствие, чтобы оно было функцией? Если да, то записать это соответствие, указав стрелками, какой элемент какому соответствует.
Решение. Итак, множество A содержит 5 элементов, а множество L - 3 элемента. Если мы поставим стрелки, ведущие от каждого элемента множества L к элементам множества A, то некоторым элементам L будут соответствовать более одного элемента A. Такое соответствие не является функцией по определению. Но если мы проведём стрелки от элементов A к элементам L, то некоторым элементам A будут соответствовать одни и те же элементы L, но при этом каждому элементу A будет соответствовать не более одного элемента L. Такое соответствие не противоречит определение функции, следовательно, ответ на вопрос задания - положительный.
Можно задать, например, такое соответствите между элементами данных множеств, которое будет функцией: