На координатной плоскости нарисуй точку E(−1;−5), точку F(1;−3) и точку A(1;−4).
1. Если нарисовать отрезок AB параллельно отрезку EF, какие будут координаты точки B?
(Отрезки равны, точку В расположи выше точки А.)
B(
;
).
2. Запиши, как из координат точки A вычислить координаты точки B, не используя рисунок!
Если координата x точки A равна 1, то координата x точки B равна 1+
.
Если координата y точки A равна −4, то координата y точки B равна −4+
.
p = 2,4*10 (в 26 степени)* 1,38*10 (в минус 23 ст.)*333 К/1 м куб = 1103*10 (в 3 ст) Па = 1,1МПа (округлено).
Примем скорость первого автомобиля за х, второго х - 30.
Расстояние от точки встречи (пусть это точка С) до В в соответствии с заданием при t=1 час равно х.
Расстояние между городами равно сумме двух отрезков:
АС = 225 - х,
СВ = х.
По заданию время движения до точки встречи одинаково для двух автомобилей.
(225 - х)/х = х/(х - 30).
х² = 225х - х² -6750 - 30х.
2х² - 195х + 6750 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-255)^2-4*2*6750=65025-4*2*6750=65025-8*6750=65025-54000=11025;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√11025-(-255))/(2*2)=(105-(-255))/(2*2)=(105+255)/(2*2)=360/(2*2)=360/4=90;
x_2=(-√11025-(-255))/(2*2)=(-105-(-255))/(2*2)=(-105+255)/(2*2)=150/(2*2)=150/4=37,5.
В соответствии с заданием ответ: скорость автомобиля, выехавшего из А равна 90 км/час.