На множестве выражений, приведенных ниже, задано отношение «содержать в произведении цифру 0». Определяет ли оно разбиение этого множества на классы? Если да, то выполните его, не вычисляя произведений. 2602•3 1803•6 17009•4
2602•7 1803•2 17019•4
26002•8 18003•7 17019
Пошаговое Обозначим через а цифру десятков этого двузначного числа.
Тогда цифра единиц этого число должна быть равной 2а, само двузначное число можно будет записать в виде 10а + 2а = 12а, а то число, которое получается из исходного путем перестановки его цифр — в виде 2а * 10 + а = 20а + а = 21а.
В исходных данных к данному заданию сообщается, что полученное путем перестановки цифр число больше исходного на 27, следовательно, можем составить следующее уравнение:
21а = 27 + 12а,
решая которое, получаем:
21а - 12а = 27;
9а = 27;
а = 27 / 9 = 3.
Следовательно, искомое число это 36.
ответ: 36.объяснение:
Выясним, составляют ли площади квадратов бесконечно убывающую геометрическую прогрессию.
Если сторона наибольшего квадрата равна 56 см, то сторона вписанного в него квадрата равна 282√ см, следующая 28 см, ...
Если сторона квадрата равна a, то его диагональ равна a2√.
Сторона вписанного квадрата равна половине диагонали...
Площадь квадрата равна a2.
Площади квадратов образуют последовательность: 562; (28⋅2√)2; 282;...
или 3136; 1568; 784; ...
Проверим, является ли эта последовательность бесконечно убывающей геометрической прогрессией.
b2b1=15683136=0,5b3b2=7841568=0,50,5<1,q=0,5
Используем формулу суммы бесконечно убывающей геометрической прогрессии: S∞=b11−q=31361−0,5=31360,5=6272 см2
Сумма площадей всех квадратов равна 6272 см2
Пошаговое объяснение: