На рисунке изображен график движения туриста. 1) на каком расстоянии от дома был турист через 6 часов после начала движения? 2) сколько часов турист затратил на остановку? 3) через сколько часов после начала движения турист был на расстоянии 8 км от дома? 4) с какой скоростью шел турист последние четыре часа? 5) найдите среднюю скорость туриста после остановки. 6) зная среднюю скорость, сравните, когда турист шел быстрее, до остановки или после?
Обозначим ВС = а, АВ = с, АС = в. Используем уравнение для нахождения длины медианы: . Неизвестные стороны обозначим: АВ = х, ВС = у. Подставим известные данные в виде системы уравнений:
Приведя к общему знаменателю и возведя в квадрат обе части уравнений, получаем: Отсюда получаем: х² = 308, х = √308 = 2√77, у² = 392, у = √392 = 14√2.
Найдя стороны треугольника по теореме Герона находим его площадь: S=√(p(p-a)(p-b)(p-c)). Здесь р - полупериметр, р = 23.674459. S = √7684 = 87.658428.
y=(x+2)^2+4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
Используем уравнение для нахождения длины медианы:
.
Неизвестные стороны обозначим: АВ = х, ВС = у.
Подставим известные данные в виде системы уравнений:
Приведя к общему знаменателю и возведя в квадрат обе части уравнений, получаем:
Отсюда получаем: х² = 308, х = √308 = 2√77,
у² = 392, у = √392 = 14√2.
Найдя стороны треугольника по теореме Герона находим его площадь:
S=√(p(p-a)(p-b)(p-c)).
Здесь р - полупериметр, р = 23.674459.
S = √7684 = 87.658428.
y=(x+2)^2+4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Пошаговое объяснение: