На рисунке показано как определяется параллакс на местности. Угол А на рисунке равен 50 0 . Базис СВ равна 300 м. Определите расстояние до объекта (елки).
Решение: Прежде чем вычислить сумму квадратов этих чисел, найдём эти числа, для этого обозначим эти числа за (х) и (у), тогда согласно условия задачи: х+у=15 (1) Средне-арифметическое этих двух чисел равно: (х+у)/2 Средне геометрическое этих двух чисел равно: √(х*у) 25% средне геометрического числа равно: 25% *√(ху) :100%=0,25*√(ху)=0,25√(ху) Согласно условия задачи составим второе уравнение: (х+у)/2 - √(ху)=0,25√(ху) (х+у)/2=0,25√(ху)+√(ху) (х+у)/2=1,25√(ху) (х+у)=2*1,25√(ху) х+у=2,5√(ху) (2) Решим получившуюся систему из двух уравнений: х+у=15 х+у=2,5√(ху) Из первого уравнения системы уравнений найдём значение (х) х=15-у -подставим значение (х) во второе уравнение 15-у+у=2,5√[(15-y)*y] 15=2,5√(15y-y²) чтобы избавиться от иррациональности в правой части, возведём левую и правую части уравнения в квадрат: 225=6,25*(15у-у²) 225=93,75у-6,25у² 6,25у²-93,75у+225=0 у1,2=(93,75+-D)/2*6,25 D=√(93,75² -4*6,25*225)=√(8789,0625-5625)=√3164,0625=56.25 у1,2=(93,75+-56,25)/12,5 у1=(93,75+56,26)/12,5=150/12,5=12 у2=(93,75-56,25)/12,5=37,5/12,5=3 Подставим значения (у1) и (у2) в х=15-у х1=15-12=3 х2=15-3=12 Из получившихся чисел можно сделать вывод, что эти два числа 12 и 3 Отсюда сумма квадратов этих чисел равна: 12²+3²=144+9=153
1. Определите знак выражения: а) sin п/6· cos 4п/7· cos 3п/5· sin 9п/5 б) sin 35п/3; cos 21п/8; sin 18п/5; sin 17п/7
Решение. а) π/6 угол в первой четверти, синус в первой четверти имеет знак плюс, значит sin π/6>0 угол 4π/7 во второй четверти (≈4·180°:7=101°), косинус во второй четверти имеет знак "-", cos 4π/7 <0 угол 3π/5(≈540°:5=108°) тоже во второй четверти, косинус во второй четверти имеет знак "-", сos 3π/5<0 угол 9π\5(≈9·180° :5=324°) в четвертой четверти, синус в четвертой четверти имеет знак "-", sin (9π/5)<0 Произведение имеет знак минус ( Плюс·минус·минус·минус) ответ. отрицательное число. б) аналогично
2. Запишите числа, в порядке возрастания: а) cos 11п/9; cos п/8; cos 2п/5; cos 16п/9 б) sin 2п/5; sin 13п/8; sin 4п/7; sin 12п/11 Решение 2а) 0<π/8 <2π/5<π/2 Два угла в первой четверти. Косинус убывающая функция, большему значению аргумента соответствует меньшее значение функции сos(π/8) > cos (2π/5) cos (11π/9)=cos (π + 2π/9) <0 так как угол 11π/9 в третьей четверти и косинус в III четверти имеет знак "-". cos (16π/9)=cos (18π-2π)/9=cos (2π- 2π/9) =cos 2π/9 >0 так как угол 16π/9 в IY четверти.
Так как 2π/5>2π/9 2π/9>2π/16=π/8 π/8 < 2π/9 <2π/5 cos(π/8)>cos (2π/9)>cos (2π/5) ответ. сos (11π/9), cos (2π/5), cos (2π/9), cos (π/8)
Прежде чем вычислить сумму квадратов этих чисел,
найдём эти числа, для этого обозначим эти числа за (х) и (у),
тогда согласно условия задачи:
х+у=15 (1)
Средне-арифметическое этих двух чисел равно:
(х+у)/2
Средне геометрическое этих двух чисел равно:
√(х*у)
25% средне геометрического числа равно:
25% *√(ху) :100%=0,25*√(ху)=0,25√(ху)
Согласно условия задачи составим второе уравнение:
(х+у)/2 - √(ху)=0,25√(ху)
(х+у)/2=0,25√(ху)+√(ху)
(х+у)/2=1,25√(ху)
(х+у)=2*1,25√(ху)
х+у=2,5√(ху) (2)
Решим получившуюся систему из двух уравнений:
х+у=15
х+у=2,5√(ху)
Из первого уравнения системы уравнений найдём значение (х)
х=15-у -подставим значение (х) во второе уравнение
15-у+у=2,5√[(15-y)*y]
15=2,5√(15y-y²) чтобы избавиться от иррациональности в правой части, возведём левую и правую части уравнения в квадрат:
225=6,25*(15у-у²)
225=93,75у-6,25у²
6,25у²-93,75у+225=0
у1,2=(93,75+-D)/2*6,25
D=√(93,75² -4*6,25*225)=√(8789,0625-5625)=√3164,0625=56.25
у1,2=(93,75+-56,25)/12,5
у1=(93,75+56,26)/12,5=150/12,5=12
у2=(93,75-56,25)/12,5=37,5/12,5=3
Подставим значения (у1) и (у2) в х=15-у
х1=15-12=3
х2=15-3=12
Из получившихся чисел можно сделать вывод, что эти два числа 12 и 3
Отсюда сумма квадратов этих чисел равна:
12²+3²=144+9=153
ответ: 153
б) sin 35п/3; cos 21п/8; sin 18п/5; sin 17п/7
Решение.
а) π/6 угол в первой четверти, синус в первой четверти имеет знак плюс, значит sin π/6>0
угол 4π/7 во второй четверти (≈4·180°:7=101°), косинус во второй четверти имеет знак "-", cos 4π/7 <0
угол 3π/5(≈540°:5=108°) тоже во второй четверти, косинус во второй четверти имеет знак "-", сos 3π/5<0
угол 9π\5(≈9·180° :5=324°) в четвертой четверти, синус в четвертой четверти имеет знак "-", sin (9π/5)<0
Произведение имеет знак минус ( Плюс·минус·минус·минус)
ответ. отрицательное число.
б) аналогично
2. Запишите числа, в порядке возрастания:
а) cos 11п/9; cos п/8; cos 2п/5; cos 16п/9
б) sin 2п/5; sin 13п/8; sin 4п/7; sin 12п/11
Решение
2а) 0<π/8 <2π/5<π/2 Два угла в первой четверти.
Косинус убывающая функция, большему значению аргумента соответствует меньшее значение функции
сos(π/8) > cos (2π/5)
cos (11π/9)=cos (π + 2π/9) <0 так как угол 11π/9 в третьей четверти и косинус в III четверти имеет знак "-".
cos (16π/9)=cos (18π-2π)/9=cos (2π- 2π/9) =cos 2π/9 >0 так как угол 16π/9 в IY четверти.
Так как 2π/5>2π/9
2π/9>2π/16=π/8
π/8 < 2π/9 <2π/5
cos(π/8)>cos (2π/9)>cos (2π/5)
ответ. сos (11π/9), cos (2π/5), cos (2π/9), cos (π/8)