На сколько частей делит пространство пять плоскостей, проходящих через одну точку( никакие три плоскости не имеют общей прямой)? а. 22; б. 44; в. 20; г. 11; д. нет правильного ответа.
подносим всё уравнение ко второй степени, тогда корень пропадает
2х²-3х+1=х²-3х+2
переносим всё в одну сторону с противоположным знаком
2х²-3х+1-х²+3х-2=0
упрощаем
х²-1=0
х²=1
х=±1
это неполное квадратное уравнение, если будет полное типа ах²±bx±c=0, тогда применяем дискриминант или теорему Виета( за условия что а=1). дискриминант должен быть больше или равно нулю!
так делаем с 5.28 по 5.34 включительно
пройдёмся по остальным уравнениям:
из 5.35 включительно по 5.48
5.35 нужно поднести к квадрату всё уравнение
3х+1=√1-х
(3х+1)²=1-х
раскрываем скобки по формуле:
(а±b)²=a²±2ab+b²
9х²+6х+1=1-х
переносим в одну сторону
9х²+6х+1-1+х=0
9х²+7х=0
так же неполное квадратное уравнение только в ином виде
выносим х за скобки
х(9х+7)=0
х=0 или 9х+7=0
9х=-7
х=-7/9
если полное квадратное смотреть указания выше↑
5.40
√8-6х-х²=6+х
далее к квадрату и по схеме
5.46
если это уравнение поднести к квадрату то в левой части х²+8 умножиться на 4 (так как 2²=4) и будет 4х²+32=(2х+1)²
Дыха́тельная систе́ма челове́ка — совокупность органов, обеспечивающих функцию внешнего дыхания человека (газообмен между вдыхаемым атмосферным воздухом и циркулирующей по малому кругу кровообращения кровью). газообмен осуществляется в альвеолах лёгких, и в норме направлен на захват из вдыхаемого воздуха кислорода и выделение во внешнюю среду образованного в организме углекислого газа. взрослый человек, находясь в состоянии покоя, совершает в среднем 14 дыхательных движений в минуту, однако частота дыхания может претерпевать значительные колебания (от 10 до 18 за минуту)[1]. взрослый человек делает 15—17 вдохов-выдохов в минуту, а новорождённый ребёнок делает 1 вдох в секунду. вентиляция альвеол осуществляется чередованием вдоха (инспирация) и выдоха (экспирация). при вдохе в альвеолы поступает атмосферный воздух, а при выдохе из альвеол удаляется воздух, насыщенный углекислым газом.
5.27 уравниваем
√2х²-3х+1=√х²-3х+2
подносим всё уравнение ко второй степени, тогда корень пропадает
2х²-3х+1=х²-3х+2
переносим всё в одну сторону с противоположным знаком
2х²-3х+1-х²+3х-2=0
упрощаем
х²-1=0
х²=1
х=±1
это неполное квадратное уравнение, если будет полное типа ах²±bx±c=0, тогда применяем дискриминант или теорему Виета( за условия что а=1). дискриминант должен быть больше или равно нулю!
так делаем с 5.28 по 5.34 включительно
пройдёмся по остальным уравнениям:
из 5.35 включительно по 5.48
5.35 нужно поднести к квадрату всё уравнение
3х+1=√1-х
(3х+1)²=1-х
раскрываем скобки по формуле:
(а±b)²=a²±2ab+b²
9х²+6х+1=1-х
переносим в одну сторону
9х²+6х+1-1+х=0
9х²+7х=0
так же неполное квадратное уравнение только в ином виде
выносим х за скобки
х(9х+7)=0
х=0 или 9х+7=0
9х=-7
х=-7/9
если полное квадратное смотреть указания выше↑
5.40
√8-6х-х²=6+х
далее к квадрату и по схеме
5.46
если это уравнение поднести к квадрату то в левой части х²+8 умножиться на 4 (так как 2²=4) и будет 4х²+32=(2х+1)²
далее так же по схеме
это касательно уравнений с 5.45 по 5.48