На столе лежит 30 карточек, среди которых есть красные и синие. каждого вида есть хотя бы одна карточка. числа на всех синих карточках различны, а числа на каждой из красных меньше любого числа на синих. среднее арифметическое всех чисел равно 12. если увеличить каждое из чисел на синих карточках в 5 раз, то среднее арифметическое станет равным 52. а) может ли на столе быть ровно 10 синих карточек? б) может ли на столе быть ровно 10 красных карточек? в) какое максимальное количество синих карточек может быть на столе
2)Нет. Треугол. бывают с прямым углом - прямоуголные. есть такая теорема:сума углов треугольника равна 180 гр., а так как 90 менше 180, то на остальные 2 угла остается еще 90 гр. то есть существуют треугольники с углом 90гр.
3)Да. Пускай m:n=m*(1/n) операцию деления поменяем умножением. Уменшим делимое и повтори замену операций (m:2):n=(m*1/2)*1/n=. А теперь скобки можна опустить так как неважно в каком порядке перемножать - результат тот же. =m*1/n*1/2, а m*1/n есть частное которое умн. на 1/2 и будет в два раза менше.
Например: 12:3=4. 12:2:3=2
4)Нет. Пускай сторона квадрата 2а, тогда его площа S=(2a)^2=4a^2. Уменшим сторону в двое- получим квадрат с стороной а и площей S1=a^2 и видим что его площа в 4 раза менше, а не в два.
2 рабочий: Если у первого-х, а по условию первый рабочий тратит на 4 часа меньше, значит время= х+4. Изготавливает 840 дет. Значит его скорость работы= 840\ х+4.
Разница между первой скоростью и второй составляет 2 детали в час. Составим уравнение:
780\х - 2= 840\(х+4)
780\х - 840\(х+4) - 2=0
780*(х+4)-840х - 2*(х²+4х)=0
780х+3120-840х-2х²-8х=0
-2х²-68х+3120=0
2х²+68х-3120=0
х²+34х-1560=0
D: 34²-4*(-1560)= 1156+6240=7396 √7396=86
1)х= -34-86\2= -120\2=-60 ( Не удовлетворяет условию, так как работа не может быть отрицательной)
2) х= 86-34\2=52\2=26.
Теперь поу словию, нам нужно найти работу 1 рабочего=( 780\х)= 780\26=30.
ответ: 30