Построим высоту АН к стороне ВС. в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН. известно, что АВ = 10, пусть АН = ВН = х, тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный. угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов. пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3 АС=2*5 корней из 2/3= 10 корней из 2/3
в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН.
известно, что АВ = 10, пусть АН = ВН = х,
тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный.
угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3
АС=2*5 корней из 2/3= 10 корней из 2/3
50 км/ч скорость мотоциклиста
Пошаговое объяснение:
Пусть скорость мотоциклиста = х км/ч
Тогда скорость велосипедиста = х-30 км/ч
Весь путь от А до Б = 1 (1 целая часть)
Тогда: 1 - 2/7 = 5/7 части пути до встречи проехал мотоциклист
Мотоциклист проехал 5/7 пути со скоростью х км/ч
Велосипедист проехал 2/7 пути со скоростью х-30 км/ч
Время они затратили одно и то же, тогда :
5/7 : х = 2/7 : (х - 30)
5/7*(х-30) = 2/7х
5/7х - 150/7 = 2/7х
5/7х - 2/7х = 150/7
3/7х = 150/7
х = 150/7 : 3/7 = 150/7 * 7/3
х = 50 (км/ч) скорость мотоциклиста