Всего 7 велосипедов и 20 колес. Числа до 20 кратные 3 (трехколесные велосипеды): 3,9,12,15,18. Числа до 20 кратные 2 (двухколесные велосипеды): 2, 4, 6, 8, 10, 12, 14, 16, 18. Найдем какие числа (трехколесные + двухколесные велосипеды) дадут в сумме 20 колес (отбросим сразу 3, 9, 15, поскольку 20-3=17 (не кратное 2), 20-9=11 (не кратное 2); 20-15=5 (не кратное 2)).
20=12(по 3 колеса) + 8(по 2колеса) = 12:3+8:2=4+4=8 велосипедов - не подходит. 20=18(по 3 колеса)+2(по два колеса) = 18÷3+2÷2=6+1= 7 велосипедов. Значит, двухколесных был один велосипед и трехколесных шесть велосипедов. ответ: один ребёнок приехал на двухколесном велосипеде.
И трехколесные и двухколесные велосипеды имеют по 2 колеса. 2×7=14 колес по 2 шт. у всех велосипедов. Для трехколесных дополнительно остается: 20-14=6 колес 6 колес нужно распределить по одному среди трехколесных велосипедов, поскольку два колеса мы уже учли: 6÷1=6 - трехколесных велосипедов, имеющих 6×3=18 колес 20-18=2 колеса - у одного двухколесного велосипеда. ответ: один ребёнок приехал на двухколесном велосипеде.
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Всего 7 велосипедов и 20 колес.
Числа до 20 кратные 3 (трехколесные велосипеды): 3,9,12,15,18.
Числа до 20 кратные 2 (двухколесные велосипеды): 2, 4, 6, 8, 10, 12, 14, 16, 18.
Найдем какие числа (трехколесные + двухколесные велосипеды) дадут в сумме 20 колес (отбросим сразу 3, 9, 15, поскольку 20-3=17 (не кратное 2), 20-9=11 (не кратное 2); 20-15=5 (не кратное 2)).
20=12(по 3 колеса) + 8(по 2колеса) = 12:3+8:2=4+4=8 велосипедов - не подходит.
20=18(по 3 колеса)+2(по два колеса) = 18÷3+2÷2=6+1= 7 велосипедов.
Значит, двухколесных был один велосипед и трехколесных шесть велосипедов.
ответ: один ребёнок приехал на двухколесном велосипеде.
И трехколесные и двухколесные велосипеды имеют по 2 колеса.
2×7=14 колес по 2 шт. у всех велосипедов.
Для трехколесных дополнительно остается:
20-14=6 колес
6 колес нужно распределить по одному среди трехколесных велосипедов, поскольку два колеса мы уже учли:
6÷1=6 - трехколесных велосипедов, имеющих 6×3=18 колес
20-18=2 колеса - у одного двухколесного велосипеда.
ответ: один ребёнок приехал на двухколесном велосипеде.
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Пошаговое объяснение:
Вот там написал