Кратное число – это число, которое делится на данное число без остатка. Наименьшее общее кратное (НОК) группы чисел – это наименьшее число, которое делится без остатка на каждое число группы. Чтобы найти наименьшее общее кратное, нужно найти простые множители данных чисел. Также НОК можно вычислить с ряда других методов, которые применимы к группам из двух и более чисел.
5.3.5. Нахождение наименьшего общего кратного (НОК) данных чисел
Наименьшим общим кратным данных натуральных чисел называют наименьшее натуральное число, кратное каждому из данных чисел. Пример. НОК(24, 42)=168. Это самое маленькое число, которое делится и на 24 и на 42. Для нахождения НОК нескольких данных натуральных чисел надо: 1) разложить каждое из данных чисел на простые множители; 2) выписать разложение большего из чисел и умножить его на недостающие множители из разложений других чисел. Наименьшее кратное двух взаимно простых чисел равно произведению этих чисел. Пример 1. Найти НОК(35; 40).
Разложим числа 35 и 40 на простые множители.
35=5∙7, 40=2∙2∙2∙5 или 40=23∙5
Берем разложение большего числа 40 и дополняем его недостающими множителями. НОК(35; 40)=23∙5∙7=40∙7=280.
ответ: НОК(35; 40)=280.
Пример 2. Найти НОК(45; 54).
Раскладываем числа 45 и 54 на простые множители.
45=32∙5, 54=2∙33.
Берем разложение числа 54 и умножаем на недостающие множители из разложения числа 45, т. е. на число 5.
НОК(45; 54)=2∙33∙5=54∙5=270.
ответ: НОК(45; 54)=270.
Пример 3. Найти НОК(75; 120; 150).
Разложим числа 75, 120 и 150 на простые множители.
75=3∙52, 120=23∙3∙5, 150=2∙3∙52
Возьмем разложение большего числа 150 и дополним его двумя «двойками», так как в разложении числа 120 имеется три «двойки», а в разложении числа 150 – только одна.
НОК(75; 120; 150)=2∙3∙52∙2∙2=150∙4=600.
ответ: НОК(75; 120; 150)=600.
Вывод: при нахождении НОК выписывают произведение всех простых (различных) множителей, имеющихся в разложениях этих чисел, причем, каждый из множителей берется с наибольшим из имеющихся показателей степеней.
Кратное число – это число, которое делится на данное число без остатка. Наименьшее общее кратное (НОК) группы чисел – это наименьшее число, которое делится без остатка на каждое число группы. Чтобы найти наименьшее общее кратное, нужно найти простые множители данных чисел. Также НОК можно вычислить с ряда других методов, которые применимы к группам из двух и более чисел.
Наименьшим общим кратным данных натуральных чисел называют наименьшее натуральное число, кратное каждому из данных чисел. Пример. НОК(24, 42)=168. Это самое маленькое число, которое делится и на 24 и на 42.
Для нахождения НОК нескольких данных натуральных чисел надо: 1) разложить каждое из данных чисел на простые множители; 2) выписать разложение большего из чисел и умножить его на недостающие множители из разложений других чисел.
Наименьшее кратное двух взаимно простых чисел равно произведению этих чисел.
Пример 1. Найти НОК(35; 40).
Разложим числа 35 и 40 на простые множители.
35=5∙7, 40=2∙2∙2∙5 или 40=23∙5
Берем разложение большего числа 40 и дополняем его недостающими множителями. НОК(35; 40)=23∙5∙7=40∙7=280.
ответ: НОК(35; 40)=280.
Пример 2. Найти НОК(45; 54).
Раскладываем числа 45 и 54 на простые множители.
45=32∙5, 54=2∙33.
Берем разложение числа 54 и умножаем на недостающие множители из разложения числа 45, т. е. на число 5.
НОК(45; 54)=2∙33∙5=54∙5=270.
ответ: НОК(45; 54)=270.
Пример 3. Найти НОК(75; 120; 150).
Разложим числа 75, 120 и 150 на простые множители.
75=3∙52, 120=23∙3∙5, 150=2∙3∙52
Возьмем разложение большего числа 150 и дополним его двумя «двойками», так как в разложении числа 120 имеется три «двойки», а в разложении числа 150 – только одна.
НОК(75; 120; 150)=2∙3∙52∙2∙2=150∙4=600.
ответ: НОК(75; 120; 150)=600.
Вывод: при нахождении НОК выписывают произведение всех простых (различных) множителей, имеющихся в разложениях этих чисел, причем, каждый из множителей берется с наибольшим из имеющихся показателей степеней.