Пусть производительность первого рабочего x (1/ч) , второго -- y (1/ч) . Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение: (1) 1/y - 1/x = 3. За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение: (2) 4x + 3y = 1 => y = (1 - 4x)/3 Подставляя в (1), получим 3/(1-4x) - 1/x = 3. Умножаем на x(1-4x): 3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2; 12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6. Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.
Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение:
(1) 1/y - 1/x = 3.
За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение:
(2) 4x + 3y = 1 => y = (1 - 4x)/3
Подставляя в (1), получим
3/(1-4x) - 1/x = 3. Умножаем на x(1-4x):
3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2;
12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому
x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6.
Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.
ответ: 8 см
1. Длина прямоугольника 8 см, ширина - 6 см. Найти площадь прямоугольника.
S = ab = 8*6 = 48 (см²)
2. Площадь прямоугольника 48 см². Найти ширину, если его длина 8 см.
S= ab => b = S/a = 48/8 = 6 (см)
Ну и на сладкое...)))
3. Длина прямоугольника на 2 см больше его ширины. Найти стороны прямоугольника, если его площадь составляет 48 см².
m = n+2 => S = mn = (n+2)n = n²+2n
n²+2n = 48
n²+2n-48=0 D=b²-4ac= 4+192 =196 = 14²
n₁=(-b+√D)/2a = 6
n₂=(-b-√D)/2a = -8 (не удовлетворяет условию)
n = 6 см, m = 6+2 = 8 см
ответ: 8см; 6 см