Поскольку колода делится пополам и количество черных и красных карт равно, то есть только одна ситуация, когда их число в половинах колоды будет равно: 3/3 в одной и 3/3 в другой. Первая ситуация определяет вторую.
Следовательно, остается найти только первую ситуацию (вероятность):
2 * ( 6! / (3! * 3!) = 2 * (6*4*5 / 3 * 2 * 1) = 2 * (4 * 5 / 1) = 2 *4 * 5 = 40 это количество вариантов, при которых выпадает требуемая ситуация.
p = 0.25 - вероятность выигрыша по одной облигации
q = 1 - p = 1 - 0.25 = 0.75
m - количество выигрышных облигаций
A = {выигрыш по 6 облигациям}
По формуле Бернулли
P(A) = P(m=6) = C(6;8)*((0.25)^6)*((0.75)^2) =
= 28*(0.000244140625)*(0.5625) =
= 0.00384521484375
2) Видимо, предполагается, что ненастные дни в сентябре распределены равномерно. Тогда в среднем за десять дней (это треть месяца) наступит ненастных. Ну, число дней дробным не бывает, а ближе всего среднее значение к 4.
Значит, вероятнее всего, в первой декаде сентября будет четыре ненастных дня. Соответственно, ясных - шесть.
Пошаговое объяснение:
Поскольку колода делится пополам и количество черных и красных карт равно, то есть только одна ситуация, когда их число в половинах колоды будет равно: 3/3 в одной и 3/3 в другой. Первая ситуация определяет вторую.
Следовательно, остается найти только первую ситуацию (вероятность):
2 * ( 6! / (3! * 3!) = 2 * (6*4*5 / 3 * 2 * 1) = 2 * (4 * 5 / 1) = 2 *4 * 5 = 40 это количество вариантов, при которых выпадает требуемая ситуация.
Общее число варинтов будет 12! / (6! * 6!) = (12 * 11 * 10 * 9 *8 *7) / (6 * 5 *4 * 3* 2) = (2 * 11 * 2 * 3 * 2 *7) / 2 = 2 * 11 * 2 *3 = 132
40 / 132 = 0,033 - вероятность того, что число черных и красных будет одинаково.
1) n = 8 - количество облигаций
p = 0.25 - вероятность выигрыша по одной облигации
q = 1 - p = 1 - 0.25 = 0.75
m - количество выигрышных облигаций
A = {выигрыш по 6 облигациям}
По формуле Бернулли
P(A) = P(m=6) = C(6;8)*((0.25)^6)*((0.75)^2) =
= 28*(0.000244140625)*(0.5625) =
= 0.00384521484375
2) Видимо, предполагается, что ненастные дни в сентябре распределены равномерно. Тогда в среднем за десять дней (это треть месяца) наступит ненастных. Ну, число дней дробным не бывает, а ближе всего среднее значение к 4.
Значит, вероятнее всего, в первой декаде сентября будет четыре ненастных дня. Соответственно, ясных - шесть.
Пошаговое объяснение: