Теорема Ферма (необходимый признак существования экстремума функции)
если точка x₀- точка экстремума функции f(x), то в этой точке производная функции равна нулю (f '(x₀) = 0) или не существует.
мы читаем наоборот. где f '(x₀) = 0 там и экстремум, значит наша точка = (-3; 0)
теперь надо определиться, это максимум или минимум
для этого применим другую теорему
Теорема (первый достаточный признак существования экстремума функции).
критическая точка x₀ является точкой экстремума функции f(x), если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
то, что нам надо из этой теоремы, я подчеркнула, потому как у нас производная в точке (-3,0) меняет знак с "+" на "-".
значит это у нас точка точка максимума.
итак, ответ
функция f(x) принимает наибольшее значение в точке (-3; 0)
Пошаговое объяснение:
Теорема Ферма (необходимый признак существования экстремума функции)
если точка x₀- точка экстремума функции f(x), то в этой точке производная функции равна нулю (f '(x₀) = 0) или не существует.
мы читаем наоборот. где f '(x₀) = 0 там и экстремум, значит наша точка = (-3; 0)
теперь надо определиться, это максимум или минимум
для этого применим другую теорему
Теорема (первый достаточный признак существования экстремума функции).
критическая точка x₀ является точкой экстремума функции f(x), если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
то, что нам надо из этой теоремы, я подчеркнула, потому как у нас производная в точке (-3,0) меняет знак с "+" на "-".
значит это у нас точка точка максимума.
итак, ответ
функция f(x) принимает наибольшее значение в точке (-3; 0)
1) 24 : 3 = 8 (км/ч) - скорость лыжника.
ответ: 8 км/ч.
2) 80 · 4 = 320 (км) проехал мотоциклист.
ответ: 320 км.
3) 28 : 7 = 4 (ч) - была в пути лодка.
ответ: 4 ч.
4) 12 : 4 = 3 (м/с) - скорость мышки.
ответ: 3 м/с.
5) 15 : 5 = 3 (ч) - пройдет пешеход.
ответ: за 3 ч.
6) 33 : 3 = 11 (км/ч) - скорость велосипедиста.
ответ: 11 км/ч.
Формула s = v · t (s - путь, v - скорость, t - время) подходит для задачи 2.
Формула t = s / v (s - путь, v - скорость, t - время) подходит для задач 3 и 5.
Формула v = s / t (s - путь, v - скорость, t - время) подходит для задач 1, 4 и 6.