В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
maximbond04
maximbond04
11.06.2020 10:20 •  Математика

Найдите наибольшее и наименьшее значение функции f(x)=x^3-2x^2+3x-7 на отрезке -3;1

Показать ответ
Ответ:
katyakot2299
katyakot2299
16.05.2021 05:15

Даны точки А (9; 4), В (-4; 5).

Геометрическое место точек, равно удалённых от А и иВ - это перпендикуляр к отрезку АВ, проведенный через его середину.

Так как в задании требуется найти множество точек С (х;у), удовлетворяющих условию АС больше ВС, то все они лежат в полуплоскости со стороны точки В.

Используем формулу расстояния между точками.

(x - 9)^2 + (y - 4)^2 > (x + 4)^2 + (y - 5)^2.

Раскрыв скобки и приведя подобные, получаем:

у > 13x - 28.

Все точки, имеющие координаты по этому неравенству, удовлетворяют условию задания.

0,0(0 оценок)
Ответ:
axdv
axdv
29.12.2022 09:39

ответ: Первая труба наполнит бассейн за 19.34 часа, вторая за 24.45 часа и третья за 5.84 часа


Пошаговое объяснение:

Введем понятие производительности трубы - какую часть от всего бассейна она наполнит за 1 час. Тогда у первой трубы производительность p1, у второй p2 и у третьей p3.

Получим три уравнения вытекающие из условий задачи:

\frac{1}{p_1+p_2}=10\frac{4}{5}\\\frac{1}{p_2+p_3}=4\frac{5}{7}\\\frac{1}{p_1}-\frac{1}{p_3}=13\frac{1}{2}

В первых двух решим пропорцию, а в третьем приведем к общему знаменателю:

p_1+p_2=\frac{5}{54}\\p_2+p_3=\frac{7}{33}\\\frac{p_3-p_1}{p_1*p_3}=13\frac{1}{2}

Из второго уравнения вычтем первое, а в третьем выразим произведение производительностей первой и третьей трубы:

p_3-p_1=\frac{7}{33}-\frac{5}{54}=\frac{7*18-5*11}{11*54}=\frac{71}{594}\\p_1*p_3=\frac{2}{27}(p_3-p_1)=\frac{2}{27}*\frac{71}{594}=\frac{142}{27*594}

В первом выразим производительность третьей через первую и подставим во второе уравнение:

p_3=p_1+\frac{71}{594}\\p_1*p_3=\frac{142}{27*594}\\p_1*(p_1+\frac{71}{594})-\frac{142}{27*594}=0\\p^2_1+\frac{71}{594}*p_1-\frac{142}{27*594}=0

Решим последнее квадратное уравнение:

p^2_1+\frac{71}{594}*p_1-\frac{142}{27*594}=0\\D=(\frac{71}{594})^2+\frac{4*142}{27*594}=\frac{71}{594}(\frac{71}{594}+\frac{8}{27})=\frac{71}{594}*\frac{71+8*22}{594}=\frac{71*247}{594^2}\\\sqrt{D}=\frac{\sqrt{71*247}}{594}\\p_1=\frac{-\frac{71}{594}+\frac{\sqrt{71*247}}{594}}{2}=\frac{\sqrt{71*247}-71}{1188}

При решении взяли дискриминант положительный, т.к. производительность не может быть отрицательной. Дальнейшее решение возможно только в приближенных числах:

p_1=\frac{\sqrt{71*247}-71}{1188}\approx0.0517

p_1+p_2=\frac{5}{54}\\p_2=\frac{5}{54}-p_1\approx0.0409\\p_2+p_3=\frac{7}{33}\\p_3=\frac{7}{33}-p_2\approx0.1712

По найденным производительностям найдем сколько времени понадобится каждой трубе для заполнения бассейна:

t_1=\frac{1}{p_1}=\frac{1}{0.0517}=19.34\\t_2=\frac{1}{p_2}=\frac{1}{0.0409}=24.45\\t_3=\frac{1}{p_3}=\frac{1}{0.1712}=5.84

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота