Найдите наибольшее (наименьшее) целое число, принадлежащее пересечению числовых промежутков 1) [3,5; 7,1] и (1; 4,9)2) (-бесконечность; 3/7] и [-8/9; +бесконечность)3(-бесконечность; +бесконечность) и [-7/1 3; 8/1 3]4) (-5,1; 9,1) и (-бесконечность; +бесконечность).
Для решения данного линейного уравнения необходимо провести раскрытие скобок в левой его части.
0,4 * (1,3 + 5/9 * x) = 0,4 * 1,3 + 0,4 * 5/9 * x = 0,52 + 0,4 * 5/9 * x .
Во втором сомножителе десятичную дробь 0,4 заменяем на обыкновенную, проводим сокращение числителя и знаменателя на число 5.
0,52 + 0,4 * 5/9 * x = 0,52 + 4/10 * 5/9 * x = 0,52 + 2/5 * 5/9 * x = 0,52 + 2/9 * х.
После преобразования левой части уравнение примет вид.
0,52 + 2/9 * х = 7/9 * x - 1,48.
Сомножители с неизвестным х переносим в левую часть уравнения, а свободные члены в правую.
2/9 * х - 7/9 * x = -1,48 - 0,52.
- 5/9 * x = -2.
х = 2 * 9/5.
х = 18/5 = 3,6.
ответ. 3,6.
(47/9у*3 +10/3*3) -23/3у=( 47 у*3/9+ 10*3/3) -23/3у, в числителе и знаменателе сокращаем на 3, получаем, (47у/3 +10) - 23/3у, раскрываем скобки и вычитаем у, получаем 47у/3-23/3 у +10 =24у/3 +10, теперь вместо у- подставляем 3 1/8 превращаем 3 1/8 в неправильную дробь=25/8, у нас получился пример:24/3*25/8+10, числитель 24 и знаменатель 8 сокращеем на 8, в первой дроби получится 3/3 во второй 25/1+10, первую дробь сокращаем=1*25 +10=35 ответ 35