В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
theknow14
theknow14
03.03.2022 04:57 •  Математика

Найдите наименьшее значение функции y=log4 (x^2-6x+17)

Показать ответ
Ответ:
Трамбовщик
Трамбовщик
15.10.2020 15:22

ответ: 1,5.

Пошаговое объяснение:

Так как log_4(x) - монотонно возрастающая функция, то наименьшее значение ymin функция y=log_4(x²-6*x+17) принимает при наименьшем значении выражения x²-6*x+17. А так как x²-6*x+17=(x-3)²+8, то отсюда следует, что наименьшее значение этого выражения равно 8 и тогда ymin=log_4(8)=1,5

0,0(0 оценок)
Ответ:
asadhfdgj
asadhfdgj
15.10.2020 15:22

ответ:   y_{min}=1,5\ .

Пошаговое объяснение:

y=log_4(x^2-6x+17)\\\\y'=\dfrac{2x-6}{(x^2-6x+17)\cdot ln4}=\dfrac{2(x-3)}{(x^2-6x+17)\cdot ln4}=0\ \ \ \to \ \ \ x=3\ , \\\\\\x^2-6x+170\ \ pri\ \ x\in R\ ,\ tak\ kak\ \ D/4=-8lne=1\\\\\\znaki\ y':\ \ \ ---(3)+++\\{}\qquad \qquad \qquad \searrow \ \ (3)\ \ \nearrow \\{}\qquad \qquad \qquad \qquad min\\x_{min}=3\ \ ,\\\\y_{min}=y(3)=log_4(9-18+17)=log_48=log_{2^2}2^3=\dfrac{3}{2}=\boxed {\ 1,5\ }


Найдите наименьшее значение функции y=log4 (x^2-6x+17)
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота