Число делится на 11, если сумма его двузначных граней делится на 11 (разбиение числа на грани начинается с его конца)
1 | 35 | 7* | 67 | 4* | 23
1 + 35 + 7 + 67 + 4 + 23 = 137
143 - ближайшее число, которое делится на 11
143 - 137 = 6 - недостающая сумма двух звёздочек
6 = 0 + 6
13 570 674 623 : 11 = 1 233 697 693
13 576 674 023 : 11 = 1 234 243 093
6 = 1 + 5
13 571 674 523 : 11 = 1 233 788 593
13 575 674 123 : 11 = 1 234 152 193
6 = 2 + 4
13 572 674 423 : 11 = 1 233 879 493
13 574 674 223 : 11 = 1 234 061 293
6 = 3 + 3
13 573 674 323 : 11 = 1 233 970 393
h = √51 + √149 ≈ 19,3 м
h = √149 - √51 ≈ 5 м
Пошаговое объяснение:
Высота равнобедренного треугольника, проведенная к основанию, является медианой.
Обозначим высоту h, половину основания а.
Площадь треугольника равна половине произведения основания на высоту:
S = ah,
по теореме Пифагора составим второе уравнение:
a² + h² = 400
Получаем систему уравнений:
ah = 98 (1)
Домножим первое уравнение на 2 и вычтем из второго:
2ah = 196
a² - 2ah + h² = 204 (2)
2) (a - h)² = 204
|a - h| = √204
|a - h| = 2√51
Возможны два случая:
1. a < h
h - a = 2√51
a = h - 2√51
Подставим выражение в (1):
h² - 2√51h - 98 = 0
D/4 = 51 + 98 = 149
h = √51 - √149 - не подходит по смыслу задачи
2. a > h
a - h = 2√51
a = h + 2√51
Подставим в (1):
h² + 2√51h - 98 = 0
h = - √51 - √149 - не подходит по смыслу задачи
h = - √51 + √149 = √149 - √51 ≈ 5 м
____________________________________________
Применена формула сокращенного дискриминанта при решении квадратного уравнения:
ax² + bx + c = 0
D/4 = (b/2)² - ac
x = (- b/2 ± √(D/4)) / a
Число делится на 11, если сумма его двузначных граней делится на 11 (разбиение числа на грани начинается с его конца)
1 | 35 | 7* | 67 | 4* | 23
1 + 35 + 7 + 67 + 4 + 23 = 137
143 - ближайшее число, которое делится на 11
143 - 137 = 6 - недостающая сумма двух звёздочек
6 = 0 + 6
13 570 674 623 : 11 = 1 233 697 693
13 576 674 023 : 11 = 1 234 243 093
6 = 1 + 5
13 571 674 523 : 11 = 1 233 788 593
13 575 674 123 : 11 = 1 234 152 193
6 = 2 + 4
13 572 674 423 : 11 = 1 233 879 493
13 574 674 223 : 11 = 1 234 061 293
6 = 3 + 3
13 573 674 323 : 11 = 1 233 970 393
h = √51 + √149 ≈ 19,3 м
h = √149 - √51 ≈ 5 м
Пошаговое объяснение:
Высота равнобедренного треугольника, проведенная к основанию, является медианой.
Обозначим высоту h, половину основания а.
Площадь треугольника равна половине произведения основания на высоту:
S = ah,
по теореме Пифагора составим второе уравнение:
a² + h² = 400
Получаем систему уравнений:
ah = 98 (1)
a² + h² = 400
Домножим первое уравнение на 2 и вычтем из второго:
2ah = 196
a² - 2ah + h² = 204 (2)
2) (a - h)² = 204
|a - h| = √204
|a - h| = 2√51
Возможны два случая:
1. a < h
h - a = 2√51
a = h - 2√51
Подставим выражение в (1):
h² - 2√51h - 98 = 0
D/4 = 51 + 98 = 149
h = √51 - √149 - не подходит по смыслу задачи
h = √51 + √149 ≈ 19,3 м
2. a > h
a - h = 2√51
a = h + 2√51
Подставим в (1):
h² + 2√51h - 98 = 0
D/4 = 51 + 98 = 149
h = - √51 - √149 - не подходит по смыслу задачи
h = - √51 + √149 = √149 - √51 ≈ 5 м
____________________________________________
Применена формула сокращенного дискриминанта при решении квадратного уравнения:
ax² + bx + c = 0
D/4 = (b/2)² - ac
x = (- b/2 ± √(D/4)) / a