В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
JinkoGloom
JinkoGloom
08.04.2021 22:05 •  Математика

Найти интервалы выпуклости, вогнутости и точки перегиба графика функции: упор можно сделать на нахождение первой и второй производной, если удастся сфотографировать подробный процесс - буду .

Показать ответ
Ответ:
Danila251008
Danila251008
05.07.2020 10:43
y = e^x* \sqrt[3]{x^2}=e^x*x^ \frac{2}{3}
y'= \frac{1}{3} {\frac {{e^{x}} ( 2+3x) }{\sqrt [3]{x}}}
y''= \frac{1}{9} {\frac {{e^{x}}( -2+12x+9x^2) }{x^{4/3}}}

Производную следует брать так:
(x^n *e^x)' = (x*n)'*e^x+x^n(e^x)'=e^x(nx^{n-1}+x^n), где n - степень, у нас она разная.

Функция выпукла вверх когда ее вторая производная отрицательна, функция выпукла вниз (вогнута) когда ее вторая производная положительна. Точки, в которых вторая производная равна нулю (это точки смены знака второй производной) - это точки перегиба (в них происходит смена направления выпуклости).
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота