попробуйпусть вм=х, тогда ас=2х(смотри рисунок). воспользуемся теоремой косинусов и найдём ав и вс. затем суммируем квадраты этих сторон, получается, что их сумма равна квадрату третьей стороны ас. по теореме обратной теореме пифагора, получается, что этот треугольник прямоугольный и угол в=90 градусов. причём при заданных условиях таких треугольников множество(на рисунке представлен один из них ав1с), они получаются при движении точки в по окружности у которой радиус равен вм. здесь наглядно видно почему угол в=90-он опирается на диаметр ас.
попробуйпусть вм=х, тогда ас=2х(смотри рисунок). воспользуемся теоремой косинусов и найдём ав и вс. затем суммируем квадраты этих сторон, получается, что их сумма равна квадрату третьей стороны ас. по теореме обратной теореме пифагора, получается, что этот треугольник прямоугольный и угол в=90 градусов. причём при заданных условиях таких треугольников множество(на рисунке представлен один из них ав1с), они получаются при движении точки в по окружности у которой радиус равен вм. здесь наглядно видно почему угол в=90-он опирается на диаметр ас.
точка A(1;-2) расположена вне окружности
Пошаговое объяснение:
Решим задание через определение степени точки относительно окружности
Степенью точки относительно данной окружности называется разность
d — расстояние от точки до центра окружности,
R — радиус окружности.
Точки имеют следуюющие степени в зависимости от расположения:
- вне окружности - положительную,
- внутри окружности - отрицательную,
- на окружности - нулевую.
Общее уравнение окружности задается уравнением
где (х0, у0) - координаты центра окружности
R - ее радиус.
В нашем случае:
Следовательно,
радиус окружности R = 1;
центр окружности O = О(0; 0)
Теперь вычислим степень точки A(1;-2) относительно этой окружности:
Итак мы выяснили, что d² - R² > 0 =>
=> точка A(1;-2) расположена вне окружности.