В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Walmok
Walmok
20.08.2020 18:35 •  Математика

Найти решение дифференциального уравнения уу'+х=0 при начальных условиях у=4 х= -2

Показать ответ
Ответ:
mrdruss
mrdruss
15.10.2020 14:36

y=\sqrt{20-x^2}

Пошаговое объяснение:

yy'+x=0, y(-2)=4

y\frac{dy}{dx}=-x

ydy=-xdx = \int ydy=-\int xdx = \frac{y^2}{2} = -\frac{x^2}{2} + \frac{C^2}{2} = x^2+y^2 = C^2 = y=\sqrt{C^2-x^2}

(перед корнем знак плюс, так как в дополнительном условии y положительный)

Определим константу С из дополнительного условия:

(-2)^2 + 4^2 = C^2 = C^2 = 20 = y=\sqrt{20-x^2}

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота