Поскольку колода делится пополам и количество черных и красных карт равно, то есть только одна ситуация, когда их число в половинах колоды будет равно: 3/3 в одной и 3/3 в другой. Первая ситуация определяет вторую.
Следовательно, остается найти только первую ситуацию (вероятность):
2 * ( 6! / (3! * 3!) = 2 * (6*4*5 / 3 * 2 * 1) = 2 * (4 * 5 / 1) = 2 *4 * 5 = 40 это количество вариантов, при которых выпадает требуемая ситуация.
Шаг:1. Выполним умножение: 2.4*7 = 16.8
Стало: (16.8/6-51/3)*(-19.2-41/3-1.8)
Шаг:2. Выполним деление: 16.8/6 Результат:2.8
Стало: (2.8-51/3)*(-19.2-41/3-1.8)
Шаг:3. Выполним деление: -51/3 Результат:-17
Стало: (2.8-17)*(-19.2-41/3-1.8)
Шаг:4. Выполним вычитание: 2.8-17 = -14.2
Стало: (-14.2)*(-19.2-41/3-1.8)
Шаг:5. Выполним деление: -41/3 Результат:-13.667
Стало: -14.2*(-19.2-13.667-1.8)
Шаг:6. Выполним вычитание: -19.2-13.667 = -32.867
Стало: -14.2*(-32.867-1.8)
Шаг:7. Выполним вычитание: -32.867-1.8 = -34.667
Стало: -14.2*(-34.667)
Шаг:8. Выполним умножение: -14.2*-34.667 = 492.2714
Стало: 492.2714
Пошаговое объяснение:
Поскольку колода делится пополам и количество черных и красных карт равно, то есть только одна ситуация, когда их число в половинах колоды будет равно: 3/3 в одной и 3/3 в другой. Первая ситуация определяет вторую.
Следовательно, остается найти только первую ситуацию (вероятность):
2 * ( 6! / (3! * 3!) = 2 * (6*4*5 / 3 * 2 * 1) = 2 * (4 * 5 / 1) = 2 *4 * 5 = 40 это количество вариантов, при которых выпадает требуемая ситуация.
Общее число варинтов будет 12! / (6! * 6!) = (12 * 11 * 10 * 9 *8 *7) / (6 * 5 *4 * 3* 2) = (2 * 11 * 2 * 3 * 2 *7) / 2 = 2 * 11 * 2 *3 = 132
40 / 132 = 0,033 - вероятность того, что число черных и красных будет одинаково.