Неравенство к виду 0 x ≤ b и укажите множество его решений: 2(3x+1)+x-2≤4x+5-3(1-x) выберите один ответ: решений нет x – любое число x – любое отрицательное число x – любое положительное число
Берем х га - площадь одной условной части. всего частей 4+3+5=9. 4х га - площадь первого участка 3х га - площадь второго участка 5х га -площадь третьего участка 4х*28 = 112х ц зерна собрано с первого участка 3х*28 = 84х ц зерна собрано со 2го участка 5х*28 = 140х ц зерна собрано с 3го участка по условию с 3го собрано больше, чем с первого на 84 ц. 5х-4х=84 х=84 => 84 га - площадь одной условной части таким образом, 112*84=9408 га - площадь 1го участка 84*84=7056 га - площадь 2го участка 140*84=11760 га - площадь 3го участка ответ: 9408 га, 7056 га, 11760 га.
Решение, при целых значениях x и y, числа х+3 и х+4 будут двумя целыми последовательными числами, а значит одно из них будет четным, т.е. будет делиться нацело на 2, а значит и произведение (х+3)(х+4) будет делиться нацело на 2.
8y - четное для любого целого значения y (как произведение чисел одно из которых (а исенно 8) четное)
8y+5 - нечетное число (как сумма четного числа 8y и нечетного числа 5)
при целых значениях переменных x и y левая часть уравнения четное число, а правая нечетное.
Следовательно данное уравнение не имеет решения в целых числах. Доказано
Решение, при целых значениях x и y, числа х+3 и х+4 будут двумя целыми последовательными числами, а значит одно из них будет четным, т.е. будет делиться нацело на 2, а значит и произведение (х+3)(х+4) будет делиться нацело на 2.
8y - четное для любого целого значения y (как произведение чисел одно из которых (а исенно 8) четное)
8y+5 - нечетное число (как сумма четного числа 8y и нечетного числа 5)
при целых значениях переменных x и y левая часть уравнения четное число, а правая нечетное.
Следовательно данное уравнение не имеет решения в целых числах. Доказано
Пошаговое объяснение: