На циферблате имеется 60 делений, на которые приходится 360 градусов. Значит, когда стрелка пройдёт 1 деление, то она переместиться на 360:60=6 градусов. Минутная стрелка за 15 мин пройдёт 6*15=90 градусов. Определим, сколько делений пройдёт часовая стрелка за то время, пока мин. стрелка проходит 15 минут, зная, что часовая стрелка проходит 5 делений за 1 час, то есть за то время, за которое минутная стрелка проходит 60 делений. 5 делений - 1 час (60 мин) х делений - 15 минут х=5*15:60=1,25 (делений) Теперь определим, на сколько градусов повернётся часовая стрелка, пока минутная поворачивается на 90 градусов (то есть минутная проходит 15 минут): 1 деление - 6 градусов 1,25 делений - х градусов х=1,25*6:1=7,5 (градусов) Угол между минутной и часовой стрелками составляет 90-7,5=82,5 градусов=82 градуса 30 минут
Найдите все значения а, при каждом из которых неравенство |x²-4x+a-5| ≤ 10 выполняется для всех x∈[a-5;a].
-10 ≤ x²-4x+a-5 ≤ 10
-x²+4x+5-10 ≤ a ≤ -x²+4x+5+1
-(x-2)²-1 ≤ a ≤ -(x-2)²+19 (1)
В декартовой системе координат а от х построим ГМТ удовлетворяющих неравенству (1). Эта область заключена между двумя параболами a = -(x-2)²-1 и a = -(x-2)²+19, включая сами параболы.
По условию a-5 ≤ x ≤ a, преобразуем:
Неравенство (2) задаёт область, которая ограничена двумя параллельными прямыми a=x-5 и a=x, включая границы.
Определим как взаимно расположены эти области.
Прямая a=x не имеет общих точек с нижней границей графика (1), значит и прямая a=x+5 не имеет с ней общих точек.
Прямая a=x+5 пересекает верхнею границу графика (1) в двух различных точках с ординатами 3 и 10. Значит и прямая а=х пересекает эту границу, надём ординаты общих точек.
При фиксированном a, все точки (x;a) графика (2) должны находится в области графика (1). По графику видно, что подходят только
Минутная стрелка за 15 мин пройдёт 6*15=90 градусов.
Определим, сколько делений пройдёт часовая стрелка за то время, пока мин. стрелка проходит 15 минут, зная, что часовая стрелка проходит 5 делений за 1 час, то есть за то время, за которое минутная стрелка проходит 60 делений.
5 делений - 1 час (60 мин)
х делений - 15 минут х=5*15:60=1,25 (делений)
Теперь определим, на сколько градусов повернётся часовая стрелка, пока минутная поворачивается на 90 градусов (то есть минутная проходит 15 минут):
1 деление - 6 градусов
1,25 делений - х градусов х=1,25*6:1=7,5 (градусов)
Угол между минутной и часовой стрелками составляет
90-7,5=82,5 градусов=82 градуса 30 минут
Найдите все значения а, при каждом из которых неравенство |x²-4x+a-5| ≤ 10 выполняется для всех x∈[a-5;a].
-10 ≤ x²-4x+a-5 ≤ 10
-x²+4x+5-10 ≤ a ≤ -x²+4x+5+1
-(x-2)²-1 ≤ a ≤ -(x-2)²+19 (1)
В декартовой системе координат а от х построим ГМТ удовлетворяющих неравенству (1). Эта область заключена между двумя параболами a = -(x-2)²-1 и a = -(x-2)²+19, включая сами параболы.
По условию a-5 ≤ x ≤ a, преобразуем:
Неравенство (2) задаёт область, которая ограничена двумя параллельными прямыми a=x-5 и a=x, включая границы.
Определим как взаимно расположены эти области.
Прямая a=x не имеет общих точек с нижней границей графика (1), значит и прямая a=x+5 не имеет с ней общих точек.
Прямая a=x+5 пересекает верхнею границу графика (1) в двух различных точках с ординатами 3 и 10. Значит и прямая а=х пересекает эту границу, надём ординаты общих точек.
При фиксированном a, все точки (x;a) графика (2) должны находится в области графика (1). По графику видно, что подходят только
ответ: