Пусть скорость течения х, скорость катера k*х, и они плыли t часов. Тогда расстояние, которое проплыл 1-й катер вверх по реке (k*x-x)*t= x*t*(k-1), 2-й катер вниз по реке х*t*(k+1). Обратно 1-й катер затратил времени x*t*(k-1)/(x*(k+1), а 2-ой катер затратил времени x*t*(k+1)/(x*(k-1). Имеем единственное уравнение: 1,5*x*t*(k-1)/(x*(k+1)=x*t*(k+1)/(x*(k-1), Тогда имеем: ((к+1)/(к-1))^2=1,5. Решаем полученное квадратное уравнение: k^2+2*k+1=1,5*k^2-3*k+1,5 0,5*k^2-5*k+0,5=0 k^2-10*k+1=0 k=5 ± √(24). Очевидно. что k > 1, значит k=5 + √(24).
Общее количество различных наборов при выборе k элементов из n без возвращения и без учёта порядка рассчитывается по формуле:
, где
Рассуждаем: поскольку нас интересуются пятизначные числа, то 0 на первом месте стоять не может, а только одна из цифр 1,2,3,7, т.е. всего 4 варианта.
На втором, третьем, четвертом и пятом местах может стоять одна из пяти возможных цифр 0,1,2,3,7, т.е. нужно посчитать количество таких четырехзначных комбинаций. Т.к. выбираем 4 элемента из 5, то количество таких наборов рассчитываем по формуле:
(наборов)
Вспоминаем, что на первом месте быть размещена одна из 4 цифр, т.е. 4 варианта, тогда всего наборов из 5 цифр будет 4*120 = 480
Тогда расстояние, которое проплыл 1-й катер вверх по реке (k*x-x)*t= x*t*(k-1), 2-й катер вниз по реке х*t*(k+1). Обратно 1-й катер затратил времени
x*t*(k-1)/(x*(k+1), а 2-ой катер затратил времени x*t*(k+1)/(x*(k-1). Имеем единственное уравнение:
1,5*x*t*(k-1)/(x*(k+1)=x*t*(k+1)/(x*(k-1),
Тогда имеем: ((к+1)/(к-1))^2=1,5.
Решаем полученное квадратное уравнение:
k^2+2*k+1=1,5*k^2-3*k+1,5
0,5*k^2-5*k+0,5=0
k^2-10*k+1=0
k=5 ± √(24).
Очевидно. что k > 1, значит k=5 + √(24).
480
Пошаговое объяснение:
Общее количество различных наборов при выборе k элементов из n без возвращения и без учёта порядка рассчитывается по формуле:
, где
Рассуждаем: поскольку нас интересуются пятизначные числа, то 0 на первом месте стоять не может, а только одна из цифр 1,2,3,7, т.е. всего 4 варианта.
На втором, третьем, четвертом и пятом местах может стоять одна из пяти возможных цифр 0,1,2,3,7, т.е. нужно посчитать количество таких четырехзначных комбинаций. Т.к. выбираем 4 элемента из 5, то количество таких наборов рассчитываем по формуле:
(наборов)
Вспоминаем, что на первом месте быть размещена одна из 4 цифр, т.е. 4 варианта, тогда всего наборов из 5 цифр будет 4*120 = 480