Поверхность прямоугольного параллелепипеда состоит из 6 граней, каждая из которых является прямоугольником. Противоположные грани прямоугольного параллелепипеда равны, поэтому площадь поверхности прямоугольного параллелепипеда вычисляют по формуле:
S = 2 · (a · b + a · c + b · c), где a, b, c - измерения прямоугольного параллелепипеда (длина, ширина и высота), S - площадь его поверхности.
№ 1.
1/8 : 3/4 = 1/8 · 4/3 = (1·1)/(2·3) = 1/6
12/17 : 24 = 12/17 · 1/24 = (1·1)/(17·2) = 1/34
0 : 1 2/3 = 0
7/9 : 2 1/3 = 7/9 : 7/3 = 7/9 · 3/7 = 3/9 = 1/3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
№ 2.
2/15 : х = 4/25
х = 2/15 : 4/25
х = 2/15 · 25/4
х = (1·5)/(3·2)
х = 5/6
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
№ 3.
S = 52 1/2 км - расстояние
t = 5/6 ч - время
v = 52 1/2 : 5/6 = 105/2 · 6/5 = (21·3)/(1·1) = 63 км/ч - скорость
Поверхность прямоугольного параллелепипеда состоит из 6 граней, каждая из которых является прямоугольником. Противоположные грани прямоугольного параллелепипеда равны, поэтому площадь поверхности прямоугольного параллелепипеда вычисляют по формуле:
S = 2 · (a · b + a · c + b · c), где a, b, c - измерения прямоугольного параллелепипеда (длина, ширина и высота), S - площадь его поверхности.
Поэтому:
а) а = 3 см, b = 6 см, с = 7 см
S = 2 · (3 · 6 + 3 · 7 + 6 · 7) = 2 · (18 + 21 + 42) = 2 · 81 = 162 (cм²);
б) а = 11 м, b = 13 дм, с = 13 дм
S = 2 · (11 · 13 + 11 · 13 + 13 · 13) = 2 · (143 + 143 + 169) = 2 · 455 = 910 (дм²);
в) а = 40 дм, b = 9 дм, с= 6 дм
S = 2 · (40 · 9 + 40 · 6 + 9 · 6) = 2 · (360 + 240 + 54) = 2 · 654 = 1308 (дм²)