1. Преобразуем:
2sin^8x - 2cos^8x = cos^2(2x) - cos2x;
2(sin^8x - cos^8x) = cos2x(cos2x - 1);
2(sin^4x + cos^4x)(sin^4x - cos^4x) - cos2x(cos2x - 1) = 0;
2((sin^2x + cos^2x)^2 - 2sin^2xcos^2x)(sin^2x + cos^2x)(sin^2x - cos^2x) + cos2x(1 - cos2x) = 0;
-cos2x(2 - sin^2(2x)) + cos2x(1 - cos2x) = 0;
cos2x(1 - cos2x - 2 + sin^2(2x)) = 0;
cos2x(-1 - cos2x + sin^2(2x)) = 0;
cos2x(1 + cos2x - sin^2(2x)) = 0;
cos2x(cos^2(2x) + cos2x) = 0;
cos^2(2x)(cos2x + 1) = 0.
2. Приравняем множители к нулю:
[cos^2(2x) = 0;
[cos2x + 1 = 0;
[cos2x = 0;
[cos2x = -1;
[2x = π/2 + πk, k ∈ Z;
[2x = π + 2πk, k ∈ Z;
[x = π/4 + πk/2, k ∈ Z;
[x = π/2 + πk, k ∈ Z.
ответ: π/4 + πk/2; π/2 + πk, k ∈ Z.
Пошаговое объяснение:
) 12 = 2 * 2 * 3
18 = 2 * 3 * 3
НОК (12; 18) = 2 * 2 * 3 * 3 = 36 - наименьшее общее кратное
2) 14 = 2 * 7
28 = 2 * 2 * 7
НОК (14; 28) = 2 * 2 * 7 = 28 - наименьшее общее кратное
3) 8 = 2 * 2 * 2
9 = 3 * 3
НОК (8; 9) = 8 * 9 = 72 - числа 8 и 9 взаимно простые, потому что не имеют общих делителей, кроме единицы.
1) 24 = 2 * 2 * 2 * 3
42 = 2 * 3 * 7
НОД (24; 42) = 2 * 3 = 6 - наибольший общий делитель
2) 128 = 2 * 2 * 2 * 2 * 2 * 2 * 2
192 = 2 * 2 * 2 * 2 * 2 * 2 * 3
НОД (128; 192) = 2 * 2 * 2 * 2 * 2 * 2 = 64 - наибольший общий делитель
1. Преобразуем:
2sin^8x - 2cos^8x = cos^2(2x) - cos2x;
2(sin^8x - cos^8x) = cos2x(cos2x - 1);
2(sin^4x + cos^4x)(sin^4x - cos^4x) - cos2x(cos2x - 1) = 0;
2((sin^2x + cos^2x)^2 - 2sin^2xcos^2x)(sin^2x + cos^2x)(sin^2x - cos^2x) + cos2x(1 - cos2x) = 0;
-cos2x(2 - sin^2(2x)) + cos2x(1 - cos2x) = 0;
cos2x(1 - cos2x - 2 + sin^2(2x)) = 0;
cos2x(-1 - cos2x + sin^2(2x)) = 0;
cos2x(1 + cos2x - sin^2(2x)) = 0;
cos2x(cos^2(2x) + cos2x) = 0;
cos^2(2x)(cos2x + 1) = 0.
2. Приравняем множители к нулю:
[cos^2(2x) = 0;
[cos2x + 1 = 0;
[cos2x = 0;
[cos2x = -1;
[2x = π/2 + πk, k ∈ Z;
[2x = π + 2πk, k ∈ Z;
[x = π/4 + πk/2, k ∈ Z;
[x = π/2 + πk, k ∈ Z.
ответ: π/4 + πk/2; π/2 + πk, k ∈ Z.
Пошаговое объяснение:
) 12 = 2 * 2 * 3
18 = 2 * 3 * 3
НОК (12; 18) = 2 * 2 * 3 * 3 = 36 - наименьшее общее кратное
2) 14 = 2 * 7
28 = 2 * 2 * 7
НОК (14; 28) = 2 * 2 * 7 = 28 - наименьшее общее кратное
3) 8 = 2 * 2 * 2
9 = 3 * 3
НОК (8; 9) = 8 * 9 = 72 - числа 8 и 9 взаимно простые, потому что не имеют общих делителей, кроме единицы.
1) 24 = 2 * 2 * 2 * 3
42 = 2 * 3 * 7
НОД (24; 42) = 2 * 3 = 6 - наибольший общий делитель
2) 128 = 2 * 2 * 2 * 2 * 2 * 2 * 2
192 = 2 * 2 * 2 * 2 * 2 * 2 * 3
НОД (128; 192) = 2 * 2 * 2 * 2 * 2 * 2 = 64 - наибольший общий делитель