Угол между осями координат 90°, поэтому треугольник получиться прямоугольным. Найти площадь круга можно через радиус, а радиус, описанной окружности около прямоугольного треугольника, можно найти через его гипотенузы (половина от гип.) т.к. угол в 90° опирается на диаметр, то есть гипотенуза это диаметр. Так вот нам надо найти гипотенузы этого треугольника, а именно её половину. Для этого найдём точки пересечения прямой с осями координат, а затем расстояние между ними, это и будет гипотенуза, дальше думаю понятно.
Угол между осями координат 90°, поэтому треугольник получиться прямоугольным. Найти площадь круга можно через радиус, а радиус, описанной окружности около прямоугольного треугольника, можно найти через его гипотенузы (половина от гип.) т.к. угол в 90° опирается на диаметр, то есть гипотенуза это диаметр. Так вот нам надо найти гипотенузы этого треугольника, а именно её половину. Для этого найдём точки пересечения прямой с осями координат, а затем расстояние между ними, это и будет гипотенуза, дальше думаю понятно.
|x - 4| * (2x + 7) = 0
Приравняем к нулю оба множителя:
|x - 4| = 0
2x + 7 = 0
Решим каждый:
|x - 4| = 0
x - 4 = 0
x = 4
2x + 7 = 0
2x = -7
x = - 7 : 2
x = -3.5
ответ: -3,5; 4
|x + 1,7| * (2x + 3) = 0
Приравняем к нулю оба множителя:
|x + 1,7| = 0
2x + 3 = 0
Решим каждый:
|x + 1,7| = 0
x + 1.7 = 0
x = -1.7
2x + 3 = 0
2x = -3
x = -3 : 2
x = -1,5
ответ: -1,5; -1,7
|5x - 8| * (x - 6) = 0
Приравняем к нулю оба множителя:
|5x - 8| = 0
x - 6 = 0
Решим каждый:
|5x - 8| = 0
5x - 8 = 0
5x = 8
x = 8 : 5
x = 1.6
x - 6 = 0
x = 6
ответ: 1,6; 6