Оценивание заданий работы No задания 1 2 3 4 Количество 1 2 3 3 итого из данных дробей нельзя представить в в ной дроби? 3 3 А) 1 Б) 3 25 B) 10 Г) 5 7 переменную а через переменную bв zat 41 2
Названия созвездиям придумали еще в древнем мире. Людижили преимущественно в северном полушарии Земли и виделитолько открытую им часть небесной сферы. Поэтому примернополовина (47 из 88) созвездий издавна названа в честь мифо-логических персонажей. Другая часть - видимая из южногополушария - была открыта и получила названия в XVII веке,после Великих географических открытий.Покажи на числовом промежутке луча множество решенийдвойного неравенства 47 < x < 88 и назови числа. Сколькочисел получилось? Сколько созвездий получили названияв XVII веке?
объясняю ( не для того, кто задал во а для тех, "кто в танке")
1)комиссия состоит из 3-х человек.
2) в комиссию может войти
а) один из 6-ти десятиклассников и 2 из 8-и одиннадцатиклассников
б) ни одного десятиклассника (т.к. понятие не более - это значит равно и меньше. Для людей - это 1 либо 0). Тогда в комиссии будут только 3 одиннадцатиклассника.
Решаем
а) 2 из 8 одиннадцатиклассников = 8!/(2!*(8-2)!) =28 но на каждого из 6 десятикл. приходится 28 комбинаций из 2-х одиннадцатикл. , соответственно комиссию можно составить б) 3 из 8 одиннадцатикл. = 8!/(3!*(8-3)!)=56
т.е. всего возможных комбинаций при заданном условии задачи будет
Названия созвездиям придумали еще в древнем мире. Людижили преимущественно в северном полушарии Земли и виделитолько открытую им часть небесной сферы. Поэтому примернополовина (47 из 88) созвездий издавна названа в честь мифо-логических персонажей. Другая часть - видимая из южногополушария - была открыта и получила названия в XVII веке,после Великих географических открытий.Покажи на числовом промежутке луча множество решенийдвойного неравенства 47 < x < 88 и назови числа. Сколькочисел получилось? Сколько созвездий получили названияв XVII веке?
Пошаговое объяснение:
объясняю ( не для того, кто задал во а для тех, "кто в танке")
1)комиссия состоит из 3-х человек.
2) в комиссию может войти
а) один из 6-ти десятиклассников и 2 из 8-и одиннадцатиклассников
б) ни одного десятиклассника (т.к. понятие не более - это значит равно и меньше. Для людей - это 1 либо 0). Тогда в комиссии будут только 3 одиннадцатиклассника.
Решаем
а) 2 из 8 одиннадцатиклассников = 8!/(2!*(8-2)!) =28 но на каждого из 6 десятикл. приходится 28 комбинаций из 2-х одиннадцатикл. , соответственно комиссию можно составить б) 3 из 8 одиннадцатикл. = 8!/(3!*(8-3)!)=56
т.е. всего возможных комбинаций при заданном условии задачи будет