Один из кандидатов в депутаты получил следующую сводку
данных о проголосовавших за него избирателей по пяти участкам
одного округа (всего избирателей 100 тыс.). Сколько процентов
Голосов по этому округу набрал этот кандидат? Избран ли он де-
путатом, если Для этого надо не меньше 50 % голосов всех изби-
рателей?
I. доказываем монотонный прирост и ограниченность
II. находим предел последовательности
Часть I:
монотонность доказываем по индукции:
Проверка:
Предполагаем справедливость неравенства для любого
Доказываем для :
Монотонный прирост доказан.
Ограниченность сверху:
Условие выполняется для , по индукции получаем справедливость для любого .
(, потому можно извлечь корень)
(*) Последовательность монотонна и ограниченна, следовательно сходится к супремуму.
Часть II.
Определим . Из (*) следует:
, но для больших выполняется (Коши), следовательно
Подставялем в рекурсию и получаем:
Из монотонности и следует .
Получаем:
(**) Как я "угадал" верхний предел для доказательства ограниченности в первой части?
- Сначала решил часть II, и выбрал подходящее значение.
Важно помнить: без части I, часть II не имеет сысла!! Потому доказательство нужно предоставлять именно в таком порядке и в полном объёме.
Дабы понять кому сколько - см сколько проходняки набирают все вместе
А+Б+В+Г+Д=546. Т. е. А=146/546=26,74%, Б=128/546=23,44%, В=112/546=20,51%, Г=97/546=17,77% и Д=11,53%
Теперь к ним надо прибавить эти проценты от 54 тыс.
Получится к А + 14,5 тыс. , к Б + 12,5 тыс. , к В + 11,1 тыс. , к Г + 9,6 тыс. и к Д + 6,2 тыс.
Т. е. суммарно АБВГД-эйка распределит промеж собой голоса так
А - 160,5 тыс. или 3 кресла (есть небол. превышение, но <1/2), Б - 140.5 тыс. и тоже 3 кресла (с небол. недобором) , В - 123,1 тыс. и 2 кресла (почти-почти могли бы взять 3, но 23,1<25), Г – 106,5 и 2 кресла (с незн. перебором) и Д - 69,2 тыс. и тоже 1 кресло (19,2<25)
Суммарно это только 11 деп. - а надо 12.
По смыслу (наиб. потерь) это кресло надо бы отдать той партии, что потеряла больше всех голосов, т. е. В, но не верю – дадут скорее всего А.
Т. е. будет А - 4, Б - 3, В - 2, Г - 2 и Д – 1
А где эта херня имела место? Просто ради любопытства?