Мама коза убрала скатерть,а первый козлёнок сделал из неё 4 салфетки. 1 скатерть = 4 салфетки,обозначим это а₁=4, Каждый следующий козлёнок брал 1 салфетку,а возвращал в сундук 4, 4-1=3 -то есть прибавлял 3 салфетки в сундук,на одну меньше,чем первый козлёнок,обозначим это а₂=а₁-1=3, Все следующие козлята,а их было 6-ть, так же брали 1 салфетку,а возвращали 4,то есть шестеро козлят добавили по 3 салфетки каждый,отсюда получаем а₂ * 6 = 3 * 6=18 -обозначим это d=а₂* 6, Составим выражение,где а₇ -это общее количество получившихся салфеток: а₇=а₁+ d =а₁+а₂ * 6=4 + 3*6=4+18 = 22-салфетки,
ответ: у семерых козлят и мамы-козы теперь есть 22 салфетки.
√(x-3)-2=0 или x-a=0 √(x-3)=2 или х=а х-3=4 или х=а х=7 или х=а
получается, что данное уравнение может иметь максимум два корня, один из которых 7, а второй "а". 1)Чтобы решение было единственным, нужно, чтобы два этих корня были равны, то есть а=7
2)также единственный корень может быть при учете ОДЗ:
произведение равно нулю, когда хотя бы один из множителей равен нулю и ПРИ ЭТОМ ОСТАЛЬНЫЕ МНОЖИТЕЛИ ИМЕЮТ СМЫСЛ.
ОДЗ: x≥3
второй корень: x=a, Если х будет меньше трёх ( соответственно а будет меньше трёх ), то этот корень не будет удовлетворять ОДЗ и останется только корень х=7
Значит, чтобы корень был единственным, нужно, чтобы а<3
нас интересует интервал а∈(0;9), значит а может равняться 1 и 2
1 скатерть = 4 салфетки,обозначим это а₁=4,
Каждый следующий козлёнок брал 1 салфетку,а возвращал в сундук 4,
4-1=3 -то есть прибавлял 3 салфетки в сундук,на одну меньше,чем первый козлёнок,обозначим это а₂=а₁-1=3,
Все следующие козлята,а их было 6-ть, так же брали 1 салфетку,а возвращали 4,то есть шестеро козлят добавили по 3 салфетки каждый,отсюда получаем
а₂ * 6 = 3 * 6=18 -обозначим это d=а₂* 6,
Составим выражение,где а₇ -это общее количество получившихся салфеток:
а₇=а₁+ d =а₁+а₂ * 6=4 + 3*6=4+18 = 22-салфетки,
ответ: у семерых козлят и мамы-козы теперь есть 22 салфетки.
x≥3
(√(x-3)-2)*(x-a)=0
√(x-3)-2=0 или x-a=0
√(x-3)=2 или х=а
х-3=4 или х=а
х=7 или х=а
получается, что данное уравнение может иметь максимум два корня, один из которых 7, а второй "а".
1)Чтобы решение было единственным, нужно, чтобы два этих корня были равны, то есть а=7
2)также единственный корень может быть при учете ОДЗ:
произведение равно нулю, когда хотя бы один из множителей равен нулю и ПРИ ЭТОМ ОСТАЛЬНЫЕ МНОЖИТЕЛИ ИМЕЮТ СМЫСЛ.
ОДЗ:
x≥3
второй корень: x=a,
Если х будет меньше трёх ( соответственно а будет меньше трёх ), то этот корень не будет удовлетворять ОДЗ и останется только корень х=7
Значит, чтобы корень был единственным, нужно, чтобы а<3
нас интересует интервал а∈(0;9), значит а может равняться 1 и 2
1+2+7=10
отв: 10